Skip to main content
Log in

Effects of K-Doping on Thermoelectric Properties of Bi1−x K x CuOTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effects of K-doping on the thermoelectric properties of Bi1−x K x CuOTe (x = 0 to 0.08) have been investigated. The compounds were synthesized by a one-step solid-state reaction method and consolidated by a spark plasma sintering process. As the amount of K-doping was increased, the electrical and thermal conductivities increased while the Seebeck coefficient decreased due to increasing hole concentration. A ZT value of 0.69 was obtained for the compound K0.01Bi0.99CuOTe at 700 K, to the best of our knowledge the highest value reported for this material system. The origin of this enhanced ZT is discussed in terms of the density of states effective mass estimated by a single parabolic band model and electronic structures calculated based on density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC, 1995).

    Book  Google Scholar 

  2. H.J. Goldsmid, Thermoelectric Refrigeration (New York: Plenum, 1964).

    Book  Google Scholar 

  3. T.M. Tritt, Semiconductors and Semimetals, Recent Trends in Thermoelectric Materials Research: Part One to Three (San Diego: Academic, 2001).

    Google Scholar 

  4. A.F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling (London: Infosearch, 1957).

    Google Scholar 

  5. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  6. Y. Kinemuchi, C. Ito, H. Kaga, T. Aoki, and K. Watari, J. Mater. Res. 7, 1942 (2007).

    Article  Google Scholar 

  7. Z.H. Dughaish, Phys. B 322, 205 (2002).

    Article  Google Scholar 

  8. A.F. Ioffe, Semiconductor; Thermoelements and Thermoelectric Cooling (London: Infosearch Limited, 1957).

    Google Scholar 

  9. J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).

    Article  Google Scholar 

  10. L.D. Zhao, D. Berardan, Y.L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, Appl. Phys. Lett. 97, 092118 (2010).

    Article  Google Scholar 

  11. Y. Liu, L.D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B.P. Zhang, D. Berardan, N. Dragoe, Y.H. Lin, C.W. Nan, J.F. Li, and H. Zhu, J. Am. Chem. Soc. 133, 20112 (2011).

    Article  Google Scholar 

  12. F. Li, J.-F. Li, L.-D. Zhao, K. Xiang, Y. Liu, B.-P. Zhang, Y.-H. Lin, C.-W. Nan, and H.-M. Zhu, Energy Environ. Sci. 5, 7188 (2012).

    Article  Google Scholar 

  13. Y.L. Pei, J. He, J.F. Li, F. Li, Q. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, and L.D. Zhao, NPG Asia Mater. 5, e47 (2013).

    Article  Google Scholar 

  14. J. Li, J. Sui, Y.L. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J.Q. He, and L.-D. Zhao, Energy Environ. Sci. 5, 8543 (2012).

    Article  Google Scholar 

  15. L.-D. Zhao, J.Q. He, D. Berardan, Y.H. Lin, J.-F. Li, C.-W. Nan, and N. Dragoe, Energy Environ. Sci. 7, 2900 (2014).

    Article  Google Scholar 

  16. H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano, and H. Hosono, Chem. Mater. 20, 326 (2008).

    Article  Google Scholar 

  17. J.L. Lan, B. Zhan, Y.C. Liu, B. Zheng, Y. Liu, Y.H. Lin, and C.W. Nan, Appl. Phys. Lett. 102, 123905 (2013).

    Article  Google Scholar 

  18. J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei, and L.-D. Zhao, J. Alloys Compd. 551, 649 (2013).

    Article  Google Scholar 

  19. F. Li, T.-R. Wei, F. Kang, and J.-F. Li, J. Mater. Chem. A 1, 11942 (2013).

    Article  Google Scholar 

  20. J. Sui, J. Li, J. He, Y.L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Cai, and L.D. Zhao, Energy Environ. Sci. 6, 2916 (2013).

    Article  Google Scholar 

  21. L. Pan, D. Berardan, L. Zhao, C. Barreteau, and N. Dragoe, Appl. Phys. Lett. 102, 023902 (2013).

    Article  Google Scholar 

  22. S.D.N. Luu and P. Vaqueiro, J. Mater. Chem. A 1, 12270 (2013).

    Article  Google Scholar 

  23. J.L. Lan, Y.C. Liu, B. Zhan, Y.H. Lin, B. Zhang, X. Yuan, W. Zhang, W. Xu, and C.W. Nan, Adv. Mater. 25, 5086 (2013).

    Article  Google Scholar 

  24. J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L.-D. Zhao, J. Mater. Chem. A 2, 4903 (2014).

    Article  Google Scholar 

  25. D.S. Lee, T.-H. An, M. Jeong, H.-S. Choi, Y.S. Lim, W.-S. Seo, C.-H. Park, C. Park, and H.-H. Park, Appl. Phys. Lett. 103, 232110 (2013).

    Article  Google Scholar 

  26. Z. Li, C. Xiao, S.J. Fan, Y. Deng, W.S. Zhang, B.J. Ye, and Y. Xie, J. Am. Chem. Soc. 137, 6587 (2015).

    Article  Google Scholar 

  27. C. Barreteau, D. Bérardan, L.D. Zhao, and N. Dragoe, J. Mater. Chem. A 1, 2921 (2013).

    Article  Google Scholar 

  28. P. Vaqueiro, G. Guélou, M. Stec, E. Guilmeau, and A.V. Powell, J. Mater. Chem. A 1, 520 (2013).

    Article  Google Scholar 

  29. T.-H. An, Y.S. Lim, H.-S. Choi, W.-S. Seo, C.-H. Park, G.-R. Kim, C. Park, C.H. Lee, and J.H. Shim, J. Mater. Chem. A 2, 19759 (2014).

    Article  Google Scholar 

  30. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  31. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  32. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  33. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  34. D. Shannon, Acta Crystallogr. 32, 751 (1976).

    Article  Google Scholar 

  35. C. Barreteau, D. Berardan, E. Amzallag, L.D. Zhao, and N. Dragoe, Chem. Mater. 34, 3168 (2012).

    Article  Google Scholar 

  36. H. Brooks, Advances in Electronics and Electron Physics (New York: Academic, 1955).

    Google Scholar 

  37. P.P. Debye and E.R. Conwell, Phys. Rev. 93, 693 (1954).

    Article  Google Scholar 

  38. A. Togo, F. Oba, I. Tanaka, and K. Tatsumi, Phys. Rev. B 74, 195128 (2006).

    Article  Google Scholar 

  39. S.-H. Wei and A. Zunger, Phys. Rev. B 55, 13605 (1997).

    Article  Google Scholar 

  40. U.V. Waghmare, N.A. Spaldin, H.C. Kandpal, and R. Seshadri, Phys. Rev. B 67, 125111 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Mid-career Researcher Program (2015R1A2A2A01005929) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Republic of Korea and also by the Power Generation & Electricity Delivery (2011-1020400090) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Ministry of Knowledge Economy (MKE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Soo Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, TH., Lim, Y.S., Seo, WS. et al. Effects of K-Doping on Thermoelectric Properties of Bi1−x K x CuOTe. J. Electron. Mater. 46, 2717–2723 (2017). https://doi.org/10.1007/s11664-016-4945-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4945-z

Keywords

Navigation