Skip to main content
Log in

Image Charge and Electric Field Effects on Hydrogen-like Impurity-bound Polaron Energies and Oscillator Strengths in a Quantum Dot

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

By using Landau–Pekar variational method, the ground and the first excited state energies and the transition frequencies between the ground and the first excited states of a hydrogen-like impurity-bound polaron in a spherical quantum dot (QD) have been studied by taking into account the image charge effect (ICE). We employ the dielectric continuum model to describe the phonon confinement effects. The oscillator strengths (OSs) of transitions from the 1s-like state to excited states of 2s, 2p x , and 2p z symmetries are calculated as functions of the applied electric field and strength of the confinement potential. We have shown that with and without image charge effect, the increase of the strength of the parabolic confinement potential leads to the increase of the oscillator strengths of 1s − 2p x and 1s − 2p z transitions. This indicates that the energy differences between 1s- and 2p x - as well as 1s- and 2p z -like states have a dominant role determining the oscillator strength. Although there is almost no difference in the oscillator strengths for transitions 1s − 2p x and 1s −2p z when the image charge effect is not taken into account, it becomes significant with the image charge effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.M. He, Y. He, Y.J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.Y. Lu, and J.W. Pan, Nat. Nanotechnol. 8, 213 (2013).

    Article  Google Scholar 

  2. C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, and Y. Yamamoto, New J. Phys. 6, 89 (2004).

    Article  Google Scholar 

  3. S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamoto, and Y. Arakawa, Nat. Mater. 5, 887 (2006).

    Article  Google Scholar 

  4. J. Brault, B. Damilano, A. Kahouli, S. Chenot, M. Leroux, B. Vinter, and J. Massies, J. Cryst. Growth 363, 282 (2013).

    Article  Google Scholar 

  5. A.J. Nozik, Phys. E 14, 115 (2002).

    Article  Google Scholar 

  6. D.A. Cardimona, C.P. Morath, D.H. Guidry, and V.M. Cowan, Infrared Phys. Technol. 59, 93 (2013).

    Article  Google Scholar 

  7. A.D. Stiff-Roberts, J. Nanophotonics 3, 031607 (2009).

    Article  Google Scholar 

  8. P. Liu, S. Cosentino, S.T. Le, S. Lee, D. Paine, A. Zaslavsky, D. Pacifici, S. Mirabella, M. Miritello, I. Crupi, and A. Terrasi, J. Appl. Phys. 112, 083103 (2012).

    Article  Google Scholar 

  9. A. Zrenner, F. Findeis, E. Beham, M. Markmann, G. Böhm, and G. Abstreiter, Phys. E 9, 114 (2001).

    Article  Google Scholar 

  10. V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaître, Eur. Phys. J. B 67, 51 (2009).

    Article  Google Scholar 

  11. V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaître, Phys. Rev. B 73, 075320 (2006).

    Article  Google Scholar 

  12. S. Wang, Y. Kang, and X.-L. Li, Superlattices Microstruct. 76, 221 (2014).

    Article  Google Scholar 

  13. C.I. Mendoza, G.J. Vazquez, M. del Castillo-Mussot, and H.N. Spector, Phys. Rev. B 71, 075330 (2005).

    Article  Google Scholar 

  14. S.S. Li and J.B. Xia, J. Appl. Phys. 101, 093716 (2007).

    Article  Google Scholar 

  15. G. Murillo and N. Porras-Montenegro, Phys. Status Solidi (B) 220, 187 (2000).

    Article  Google Scholar 

  16. M. Kırak, S. Yılmaz, M. Şahin, and M. Gençaslan, J. Appl. Phys. 109, 094309 (2011).

    Article  Google Scholar 

  17. W. Xie, Phys. Lett. A 373, 225 (2009).

    Google Scholar 

  18. L. He and W. Xie, Superlattices Microstruct. 47, 266 (2010).

    Article  Google Scholar 

  19. H. El Ghazi, A. Jorio, and I. Zorkani, Phys. B 426, 155 (2013).

    Article  Google Scholar 

  20. A.L. Vartanian, L.A. Vardanyan, and E.M. Kazaryan, Phys. Lett. A 360, 649 (2007).

    Article  Google Scholar 

  21. A.L. Vartanian, L.A. Vardanyan, and E.M. Kazaryan, Phys. Status Solidi B 245, 123 (2008).

    Article  Google Scholar 

  22. A.L. Vartanian, L.A. Vardanyan, and E.M. Kazaryan, Phys. E 40, 1513 (2008).

    Article  Google Scholar 

  23. Y.F. Huangfu and Z.W. Yan, Phys. E 40, 2982 (2008).

    Article  Google Scholar 

  24. K.M. Kumar, A.J. Peter, and C.W. Lee, Superlattices Microstruct. 51, 184 (2012).

    Article  Google Scholar 

  25. L. Shi and Z.W. Yan, J. Appl. Phys. 110, 024306 (2011).

    Article  Google Scholar 

  26. L. Shi and Z.W. Yan, Eur. Phys. J. B 86, 244 (2013).

    Article  Google Scholar 

  27. L. Shi and Z.W. Yan, Solid State Commun. 209–210, 27 (2015).

    Article  Google Scholar 

  28. D.V. Melnikov and W.B. Fowler, Phys. Rev. B 64, 195335 (2001).

    Article  Google Scholar 

  29. D.V. Melnikov and W.B. Fowler, Phys. Rev. B 63, 165302 (2001).

    Article  Google Scholar 

  30. K. Chang and F.M. Peeters, J. Appl. Phys. 88, 5246 (2000).

    Article  Google Scholar 

  31. J.L. Movilla and J. Planelles, Comput. Phys. Commun. 170, 144 (2005).

    Article  Google Scholar 

  32. R. Messina, J. Chem. Phys. 117, 11062 (2002).

    Article  Google Scholar 

  33. Z. Gan, X. Xing, and Zh Xu, J. Chem. Phys. 137, 034708 (2012).

    Article  Google Scholar 

  34. A.L. Vartanian and L.A. Vardanyan, Phys. E 75, 174 (2016).

    Article  Google Scholar 

  35. S. Yilmaz and H. Safak, Phys. E 36, 40 (2007).

    Article  Google Scholar 

  36. A. Ozmen, Y. Yakar, B. Cakır, and U. Atav, Opt. Commun. 282, 3999 (2009).

    Article  Google Scholar 

  37. D. Stojanović and R. Kostić, Phys. Scr. T157, 014044 (2013).

    Article  Google Scholar 

  38. V.A. Holovatsky, O.M. Makhanets, and O.M. Voitsekhivska, Phys. E 41, 1522 (2009).

    Article  Google Scholar 

  39. M. Şahin, Phys. Rev. B 77, 045317 (2008).

    Article  Google Scholar 

  40. L.E. Brus, J. Chem. Phys. 80, 4403 (1984).

    Article  Google Scholar 

  41. M.C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Phys. Rev. B 42, 11123 (1990).

    Article  Google Scholar 

  42. J.C. Marini, B. Stebe, and E. Kartheuser, Phys. Rev. B 50, 14302 (1994).

    Article  Google Scholar 

  43. K. Oshiro, K. Akai, and M. Matsuura, Phys. Rev. B 58, 7986 (1998).

    Article  Google Scholar 

  44. L.D. Landau and S.I. Pekar, Zh. Eksp. Teor. Fiz. 16, 341 (1946).

    Google Scholar 

  45. S.I. Pekar, Untersuchungen über die Elektronen-Theorie der Kristalle (Berlin: AkademieVerlag, 1954).

    Google Scholar 

  46. A. Latge, N. Porras-Montenegro, and L.E. Oliveira, Phys. Rev. B 45, 9420 (1992).

    Article  Google Scholar 

  47. S. Chaudhuri and K.K. Bajaj, Phys. Rev. B 29, 1803 (1984).

    Article  Google Scholar 

  48. R.L. Greene and K.K. Bajaj, Solid State Commun. 45, 825 (1983).

    Article  Google Scholar 

  49. S. Adachi, J. Appl. Phys. 58, R1 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Vardanyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vardanyan, L.A., Vartanian, A.L., Asatryan, A.L. et al. Image Charge and Electric Field Effects on Hydrogen-like Impurity-bound Polaron Energies and Oscillator Strengths in a Quantum Dot. J. Electron. Mater. 45, 5847–5852 (2016). https://doi.org/10.1007/s11664-016-4788-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4788-7

Keywords

Navigation