Skip to main content
Log in

Facile Sol–Gel/Spray-Drying Synthesis of Interweaved Si@TiO2&CNTs Hybrid Microsphere as Superior Anode Materials for Li-Ion Batteries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A unique intertwined structure of silicon-based composite (Si@TiO2&CNTs) has been synthesized by sol–gel and spray drying methods. The Si@TiO2&CNTs is mainly composed of three kinds of materials:the prepared nanosilicon particles, TiO2, and carbon nanotubes (CNTs). A layer of TiO2 particles is found effective for enhancing the electrical conductivity and structure stability of the silicon particles. Additionally, the twisted CNTs are beneficial to build a better conductive network, consequently improving the anode working conditions when the cell is charged or discharged. As a lithium ion battery anode, a specific capacity of approximately 1521 mAh g−1 after 100 cycles is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Terranova, S. Orlanducci, E. Tamburri, V. Guglielmotti, and M. Rossi, J. Power Sources 246, 167 (2014).

    Article  Google Scholar 

  2. B. Liang, Y. Liu, and Y. Xu, J. Power Sources 267, 469 (2014).

    Article  Google Scholar 

  3. X. Huang, J. Yang, S. Mao, J. Chang, P.B. Hallac, C.R. Fell, B. Metz, J. Jiang, P.T. Hurley, and J. Chen, Adv. Mater. 26, 4326 (2014).

    Article  Google Scholar 

  4. Y. Zhu, W. Liu, X. Zhang, J. He, J. Chen, Y. Wang, and T. Cao, Langmuir 29, 744 (2013).

    Article  Google Scholar 

  5. Y. Zhou, X. Jiang, L. Chen, J. Yue, H. Xu, J. Yang, and Y. Qian, Electrochim. Acta 127, 252 (2014).

    Article  Google Scholar 

  6. L. Yue, W. Zhang, J. Yang, and L. Zhang, Electrochim. Acta 125, 206 (2014).

    Article  Google Scholar 

  7. J. Xie, G. Wang, Y. Huo, S. Zhang, G. Cao, and X. Zhao, Electrochim. Acta 135, 94 (2014).

    Article  Google Scholar 

  8. X. Feng, J. Yang, Y. Bie, J. Wang, Y. Nuli, and W. Lu, Nanoscale 6, 12532 (2014).

    Article  Google Scholar 

  9. X. Shen, D. Mu, S. Chen, B. Xu, B. Wu, and F. Wu, J. Alloy. Compd. 552, 60 (2013).

    Article  Google Scholar 

  10. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, and Y. Cui, Nature Nanotech. 9, 187 (2014).

    Article  Google Scholar 

  11. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui, Nature Nanotech. 3, 31 (2008).

    Article  Google Scholar 

  12. C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, and Z. Bao, Nat. Chem. 5, 1042 (2013).

    Article  Google Scholar 

  13. D.C. Lin, Z.D. Lu, P.C. Hsu, H.R. Lee, N. Liu, J. Zhao, H.T. Wang, C. Liu, and Y. Cui, Energy Environ. Sci. 8, 2371 (2015).

    Article  Google Scholar 

  14. Y. Yao, K.F. Huo, L.B. Hu, N.A. Liu, J.J. Ha, M.T. McDowell, P.K. Chu, and Y. Cui, ACS Nano 5, 8346 (2011).

    Article  Google Scholar 

  15. L. Shen, H. Li, E. Uchaker, X. Zhang, and G. Cao, Nano Lett. 12, 5673 (2012).

    Article  Google Scholar 

  16. X.L. Zou, X.H. Hou, Z.B. Cheng, Y.L. Huang, M. Yue, and S.J. Hu, Chin. Sci. Bull. 59, 2875 (2014).

    Article  Google Scholar 

  17. G. Jeong, J.H. Kim, Y.U. Kim, and Y.J. Kim, J. Mater. Chem. 22, 7999 (2012).

    Article  Google Scholar 

  18. W. Li, F. Wang, Y. Liu, J. Wang, J. Yang, L. Zhang, A.A. Elzatahry, D. Al-Dahyan, Y. Xia, and D. Zhao, Nano Lett. 15, 2186 (2015).

    Article  Google Scholar 

  19. X. Li, L. Zhou, Y. Wei, A.M. El-Toni, F. Zhang, and D. Zhao, J. Am. Chem. Soc. 137, 5903 (2015).

    Article  Google Scholar 

  20. B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, and F. Nie, Sci. Rep. 4, 3729 (2014).

    Google Scholar 

  21. Z. Sun, J.H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y.M. Kang, and S.X. Dou, J. Am. Chem. Soc. 133, 19314 (2011).

    Article  Google Scholar 

  22. S. Fang, L. Shen, G. Xu, P. Nie, J. Wang, H. Dou, and X. Zhang, Acs Appl. Mater. Interfaces 6, 6497 (2014).

    Article  Google Scholar 

  23. X. Wang, Q. Xiang, B. Liu, L. Wang, T. Luo, D. Chen, and G. Shen, Sci. Rep. 3, 2007 (2013).

    Google Scholar 

  24. S. Yang, G. Huang, S. Hu, X. Hou, Y. Huang, M. Yue, and G. Lei, Mater. Lett. 118, 8 (2014).

    Article  Google Scholar 

  25. Y. Yue and H. Liang, J. Power Sources 284, 435 (2015).

    Article  Google Scholar 

  26. Z.X. Huang, Y. Wang, J.I. Wong, W.H. Shi, and H.Y. Yang, Electrochim. Acta 167, 388 (2015).

    Article  Google Scholar 

  27. Z. Gao, Z. Cui, S. Zhu, Y. Liang, Z. Li, and X. Yang, J. Power Sources 283, 397 (2015).

    Article  Google Scholar 

  28. X. Hou, J. Wang, M. Zhang, X. Liu, Z. Shao, W. Li, and S. Hu, RSC Adv. 4, 34615 (2014).

    Article  Google Scholar 

  29. X. Hou, M. Zhang, J. Wang, S. Hu, X. Liu, and Z. Shao, J. Alloy. Compd. 639, 27 (2015).

    Article  Google Scholar 

  30. X. Song, Q. Ru, B. Zhang, S. Hu, and B. An, J. Alloy. Compd. 585, 518 (2014).

    Article  Google Scholar 

  31. Z. Favors, W. Wang, H.H. Bay, Z. Mutlu, K. Ahmed, C. Liu, M. Ozkan, and C.S. Ozkan, Sci. Rep. 4, 5623 (2014).

    Google Scholar 

  32. C.-H. Doh, A. Veluchamy, D.-J. Lee, J.-H. Lee, B.-S. Jin, S.-I. Moon, C.-W. Park, D.-W. Kim, and B. Kor, Chem. Soc. 31, 1257 (2010).

    Google Scholar 

  33. R. Epur, M.K. Datta, and P.N. Kumta, Electrochim. Acta 85, 680 (2012).

    Article  Google Scholar 

  34. Y. Fan, Q. Zhang, Q. Xiao, X. Wang, and K. Huang, Carbon 59, 264 (2013).

    Article  Google Scholar 

  35. M. Zhang, X. Hou, J. Wang, M. Li, S. Hu, Z. Shao, and X. Liu, J. Alloy. Compd. 588, 206 (2014).

    Article  Google Scholar 

  36. H.-C. Tao, X.-L. Yang, L.-L. Zhang, and S.-B. Ni, Mater. Chem. Phys. 147, 528 (2014).

    Article  Google Scholar 

  37. Y.-X. Yin, S. Xin, L.-J. Wan, C.-J. Li, and Y.-G. Guo, J. Phys. Chem. C 115, 14148 (2011).

    Article  Google Scholar 

  38. M.-S. Wang, L.-Z. Fan, M. Huang, J. Li, and X. Qu, J. Power Sources 219, 29 (2012).

    Article  Google Scholar 

  39. W. Wang and P.N. Kumta, ACS Nano 4, 2233 (2010).

    Article  Google Scholar 

  40. Y. Hwa, C.-M. Park, and H.-J. Sohn, J. Power Sources 222, 129 (2013).

    Article  Google Scholar 

  41. L. Zhong, J. Guo, and L. Mangolini, J. Power Sources 273, 638 (2015).

    Article  Google Scholar 

  42. N.T. Hieu, J. Suk, D.W. Kim, O.H. Chung, J.S. Park, and Y. Kang, Synth. Met. 198, 36 (2014).

    Article  Google Scholar 

  43. K.-S. Park, K.-M. Min, S.-D. Seo, G.-H. Lee, H.-W. Shim, and D.-W. Kim, Mater. Res. Bull. 48, 1732 (2013).

    Article  Google Scholar 

  44. L. Hu, N. Liu, M. Eskilsson, G. Zheng, J. McDonough, L. Wågberg, and Y. Cui, Nano Energy 2, 138 (2013).

    Article  Google Scholar 

  45. Z. Chen, J. W. F. To, C. Wang, Z. Lu, N. Liu, A. Chortos, L. Pan, F. Wei, Y. Cui, and Z. Bao, Adv. Energy Mater. 4, n/a (2014).

  46. B.J. Jeon and J.K. Lee, Electrochim. Acta 56, 6261 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianhua Hou or Shejun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hou, X., Li, Y. et al. Facile Sol–Gel/Spray-Drying Synthesis of Interweaved Si@TiO2&CNTs Hybrid Microsphere as Superior Anode Materials for Li-Ion Batteries. J. Electron. Mater. 45, 5773–5780 (2016). https://doi.org/10.1007/s11664-016-4785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4785-x

Keywords

Navigation