Skip to main content
Log in

Growth and Strain Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell Structures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Metalorganic chemical vapor deposition (MOCVD) has been used for development of photovoltaic (PV) structures that enable enhanced efficiency for triple-junction solar cell (TJSC) devices. The in-plane strain, lattice match, surface defects, surface morphology, compositional uniformity, threading dislocations (TDs), and depth profile of each layer of the TJSC structure have been examined. The heteroepitaxial layers were found to be near lattice matched to the substrate with excellent coherence between the layers. The analysis explained that the indium gallium phosphide (InGaP) and indium gallium arsenide (InGaAs) layers on germanium (Ge) substrate are a strained structure with purely tetragonal crystalline phase, which indicates that the TJSC structural layers could maintain high crystalline quality. The biaxial in-plane strain in each layer of the TJSC structure is compressive and varies in magnitude for each layer in the structure, being strongly influenced by the Ge substrate and the multiple epilayers of the PV structure. Transmission electron microscopy (TEM) results show no TDs observed over a region with area of 500 nm2, with surface defect density less than 1 × 108 cm−2. No evidence of stacking faults and no visible defects of antiphase domains (APDs) at interfaces were observed, indicating adequate nucleation of epitaxial layers on the substrate and on subsequent growth layers. Furthermore, secondary-ion mass spectrometry (SIMS) analysis showed no significant Ge diffusion from the substrate into the TJSC structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.F. Geisz, D.J. Friedman, J.S. Ward, A. Duda, W.J. Olavarria, T.E. Moriarty, J.T. Kiehl, M.J. Romero, A.G. Norman, and K.M. Jones, Appl. Phys. Lett. 93, 1235051 (2008).

    Article  Google Scholar 

  2. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, and N.H. Karam, Appl. Phys. Lett. 90, 183516 (2007).

    Article  Google Scholar 

  3. R.F. Davis, Proc. IEEE 79, 702 (1991).

    Article  Google Scholar 

  4. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  Google Scholar 

  5. R.M. Sieg, S.A. Ringel, S.M. Ting, E.A. Fitzgerald, and R.N. Sachs, J. Electron. Mater. 27, 900 (1998).

    Article  Google Scholar 

  6. A.G. Thompson, Mater. Lett. 30, 225 (1997).

    Article  Google Scholar 

  7. M.D. Williams, A.L. Greene, T. Daniels-Race, and R.M. Lum, Appl. Surf. Sci. 157, 123 (2000).

    Article  Google Scholar 

  8. R. Fischer, W.T. Masselink, J. Klem, T. Henderson, T.C. McGHnn, M.V. Klein, and H. Morkoc, J. Appl. Phys. 58, 374 (1985).

    Article  Google Scholar 

  9. W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  Google Scholar 

  10. K. Nakajima, S. Kodama, S. Miyashita, G. Sazaki, and S. Hiyamizu, J. Cryst. Growth 205, 270 (1999).

    Article  Google Scholar 

  11. P.A. Iles, Sol. Energy Mater. Sol. Cells 68, 1 (2001).

    Article  Google Scholar 

  12. T. Takamoto, M. Kaneiwa, M. Imaizumi, and M. Yamaguchi, Prog. Photovolt. 13, 495 (2005).

    Article  Google Scholar 

  13. M. Yamaguchi, T. Takamoto, K. Araki, and N.E. Daukes, Sol. Energy 79, 78 (2005).

    Article  Google Scholar 

  14. F. Dimroth, Phys. Status Solidi C 3, 373 (2006).

    Article  Google Scholar 

  15. K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, Sol. Energy Mater. Sol. C 90, 1308 (2006).

    Article  Google Scholar 

  16. S.V. Shynu, M.J. Ammann, and B. Norton, Electron. Lett. 44, 570 (2008).

    Article  Google Scholar 

  17. M. Dhondt, Z.-Q. Yu, B. Depreter, C. Sys, I. Moerman, P. Demeester, and P. Mijlemans, J. Cryst. Growth 195, 655 (1998).

    Article  Google Scholar 

  18. R. Tyagi, M. Singh, M. Thirumavalavan, T. Srinivasan, and S.K. Agarwal, J. Electron. Mater. 31, 234 (2002).

    Article  Google Scholar 

  19. L. Knuuttila, A. Lankinen, J. Likonen, H. Lipsanen, X. Lu, P. Mcnally, J. Riikonen, and T. Tuomi, Jpn. J. Appl. Phys. 44, 7777 (2005).

    Article  Google Scholar 

  20. L.C. Bobb, H. Holloway, K.H. Maxwell, and E. Zimmerman, J. Appl. Phys. 37, 4687 (1966).

    Article  Google Scholar 

  21. H. Kroemer, J. Cryst. Growth 81, 193 (1987).

    Article  Google Scholar 

  22. Y. Li, G. Salviati, M.M.G. Bongers, L. Lazzarini, L. Nasi, and L.J. Giling, J. Cryst. Growth 163, 195 (1996).

    Article  Google Scholar 

  23. Q. Xu, J.W.P. Hsu, S.M. Ting, E.A. Fitzgerald, R.M. Sieg, and S.A. Ringel, J. Electron. Mater. 27, 1010 (1998).

    Article  Google Scholar 

  24. M.K. Hudait and S.B. Krupanidhi, Mater. Res. Bull. 35, 909 (2000).

    Article  Google Scholar 

  25. M. Yamaguchi, Physica E 14, 84 (2002).

    Article  Google Scholar 

  26. J. Derluyn, K. Dessein, G. Flamand, Y. Mols, J. Poortmans, G. Borghs, and I. Moerman, J. Cryst. Growth 247, 237 (2003).

    Article  Google Scholar 

  27. V.K. Yang, S.M. Ting, M.E. Groenert, M.T. Bulsara, M.T. Currie, C.W. Leitz, and E.A. Fitzgerald, J. Appl. Phys. 93, 5095 (2003).

    Article  Google Scholar 

  28. T. Roesener, V. Klinger, C. Weuffen, D. Lackner, and F. Dimroth, J. Cryst. Growth 368, 21 (2013).

    Article  Google Scholar 

  29. J. Heyd, J.E. Peralta, G.E. Scuseria, and R.L. Martin, J. Chem. Phys. 123, 174101 (2005).

    Article  Google Scholar 

  30. E. Koppensteiner and G. Bauer, J. Appl. Phys. 76, 3489 (1994).

    Article  Google Scholar 

  31. H. Asai and K. Oe, J. Appl. Phys. 54, 2052 (1983).

    Article  Google Scholar 

  32. S.C. Sun, Z.Q. Qi, H.Q. Chen, X.H. Huang, W. Tian, F. Wu, Z.H. Wu, J.N. Dai, and C.Q. Chen, J. Alloy. Compd. 590, 1 (2014).

    Article  Google Scholar 

  33. R. Jakomin, M. d. Kersauson, M.E. Kurdi, L. Largeau, O. Mauguin, G. Beaudoin, S. Sauvage, R. Ossikovski, G. Ndong, M. Chaigneau, I. Sagnes, and P. Boucaud, Appl. Phys. Lett. 98, 091901 (2011).

  34. K.F. Brennan and P.-K. Chiang, J. Appl. Phys. 71, 1055 (1992).

    Article  Google Scholar 

  35. C.P. Kuo, S.K. Vong, R.M. Cohen, and G.B. Stringfellow, J. Appl. Phys. 57, 5428 (1985).

    Article  Google Scholar 

  36. J.J. Worthman and R.A. Evans, J. Appl. Phys. 36, 153 (1965).

    Article  Google Scholar 

  37. A. Onton, M.R. Lorenz, W. Reuter, J. Appl. Phys. 42 (1971).

  38. J. Katcki, J. Ratajczak, J. Adamczewska, F. Phillipp, N.Y. Jin-Phillipp, K. Reginski, and M. Bugajski, Phys. Status Solidi A 171, 275 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim A. Alhomoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhomoudi, I.A. Growth and Strain Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell Structures. J. Electron. Mater. 45, 4823–4832 (2016). https://doi.org/10.1007/s11664-016-4748-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4748-2

Keywords

Navigation