Skip to main content
Log in

Ascorbic Acid Assisted Synthesis of Cobalt Oxide Nanostructures, Their Electrochemical Sensing Application for the Sensitive Determination of Hydrazine

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study describes, the synthesis of cobalt oxide nanostructures using ascorbic acid as a growth directing agent by the hydrothermal method. Ascorbic acid is used for the first time for the synthesis of cobalt oxide nanostructures and a unique morphology is prepared in the present study. The cobalt oxide nanostructures were characterized by scanning electron microcopy, x-ray diffraction, and x-ray photoelectron spectroscopy techniques. These analytical techniques demonstrated well defined morphology, good crystalline quality, and high purity of as prepared cobalt oxide nanostructures. The glassy carbon electrode was modified with cobalt oxide nanostructures for the development of a sensitive and selective electrochemical hydrazine sensor. The developed hydrazine sensor exhibits a linear range of 2–24 μM. The sensitivity and limit of detection of presented hydrazine sensors are 12,734 μA/mM/cm2 and 0.1 μM respectively. The developed hydrazine sensor is highly selective, stable, and reproducible. The proposed sensor is successfully applied for the detection of hydrazine from different water samples. The present study provides the development of an alternative tool for the reliable monitoring of hydrazine from environmental and biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Umar, S.K. Kansal, and S.K. Mehta, Sens. Actuators B Chem. 188, 372 (2013).

    Article  Google Scholar 

  2. M. Mazloum-Ardakani, A. Khoshroo, and L. Hosseinzadeh, Sens. Actuators B Chem. 214, 132 (2015).

    Article  Google Scholar 

  3. Y. He, J. Zheng, and S. Dong, Analyst 137, 4841 (2012).

    Article  Google Scholar 

  4. B. Haghighi, H. Hamidi, and S. Bozorgzadeh, Anal. Bioanal. Chem. 398, 1411 (2010).

    Article  Google Scholar 

  5. Q. Sheng, Y. He, and J. Zheng, Microchim. Acta 177, 479 (2012).

    Article  Google Scholar 

  6. S. Kocak and B. Aslışen, Sens. Actuators B Chem. 196, 610 (2014).

    Article  Google Scholar 

  7. H.J. Zhang, J.S. Huang, H.Q. Hou, and T.Y. You, Electroanalysis 21, 1869 (2009).

    Article  Google Scholar 

  8. L. Zheng and J.F. Song, Talanta 79, 319 (2009).

    Article  Google Scholar 

  9. A. Salimi, L. Miranzadeh, and R. Hallaj, Talanta 75, 147 (2008).

    Google Scholar 

  10. G.Z. Hu, Z.P. Zhou, Y. Guo, H.Q. Hou, and S.J. Shao, Electrochem. Commun. 12, 422 (2010).

    Article  Google Scholar 

  11. Q.F. Yi and W.Q. Yu, J. Electroanal. Chem. 633, 159 (2009).

    Article  Google Scholar 

  12. J.B. Zheng, Q.L. Sheng, L. Li, and Y. Shen, J. Electroanal. Chem. 611, 155 (2007).

    Article  Google Scholar 

  13. K.I. Ozoemena and T. Nyokong, Talanta 67, 162 (2005).

    Article  Google Scholar 

  14. A.S. Adekunle and K.I. Ozoemena, J. Electroanal. Chem. 645, 41–49 (2010).

    Article  Google Scholar 

  15. P.R. Solanki, A. Kaushik, V.V. Agrawal, and B.D. Malhotra, NPG Asia Mater. 3, 17 (2011).

    Article  Google Scholar 

  16. X. Wang, X.Y. Chen, L.S. Gao, H.G. Zheng, Z. Zhang, and Y.T. Qian, J. Phys. Chem. B 108, 16401 (2004).

    Article  Google Scholar 

  17. J. Feng and H.C. Zeng, Chem. Mater. 15, 2829 (2003).

    Article  Google Scholar 

  18. G.K. Kouassi, J. Irudayaraj, and G. McCarty, J. Nanobiotechnol. 3, 1 (2005).

    Article  Google Scholar 

  19. S.P. Singh, S.K. Arya, P. Pandey, B.D. Malhotra, S. Saha, K. Sreenivas, and V. Gupta, Appl. Phys. Lett. 91, 063901 (2007).

    Article  Google Scholar 

  20. A. Salimi, R. Hallaj, and S. Soltanian, Electroanalysis 21, 2693 (2009).

    Article  Google Scholar 

  21. A.A. Ansari, A. Kaushik, P.R. Solanki, and B.D. Malhotra, Electroanalysis 21, 965 (2009).

    Article  Google Scholar 

  22. A. Kumar, R. Malhotra, B.D. Malhotra, and S.K. Grover, Anal. Chim. Acta 414, 43 (2000).

    Article  Google Scholar 

  23. Z.H. Ibupoto, K. Khun, X. Liu, and M. Willander, Mater. Sci. Eng. C 33, 3889 (2013).

    Article  Google Scholar 

  24. A. Earnshaw and N. Greenwood, Chemistry of the Elements, 2nd ed. (Butterworth Heinemann: Oxford, UK, 1997).

    Google Scholar 

  25. Y. Yu, C.H. Chen, J.L. Shui, and S. Xie, Chem. Int. Ed. 44, 7085 (2005).

    Article  Google Scholar 

  26. Y.G. Li, B. Tan, and Y.Y. Wu, J. Am. Chem. Soc. 128, 14258 (2006).

    Article  Google Scholar 

  27. T. Maruyama and S. Arai, J. Electrochem. Soc. 143, 1383 (1996).

    Article  Google Scholar 

  28. L. Yan, X.M. Zhang, T. Ren, H.P. Zhang, X.L. Wang, and J.S. Suo, Chem. Commun. 8, 860 (2002).

    Article  Google Scholar 

  29. J. Wollenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, and H. Bottner, Sens. Actuators B Chem. 93, 442 (2003).

    Article  Google Scholar 

  30. X. Yao, X. Xin, Y. Zhang, J. Wang, Z. Liu, and X. Xu, J. Alloys Compd. 521, 95 (2012).

    Article  Google Scholar 

  31. T. He, D.R. Chen, X.L. Jiao, and Y.L. Wang, Adv. Mater. 18, 1078 (2006).

    Article  Google Scholar 

  32. G. Feng, L. Chunzhong, H. Yanjie, and Z. Ling, J. Cryst. Growth 304, 369 (2007).

    Article  Google Scholar 

  33. P. Dutta, M.S. Seehra, S. Thota, and J. Kumar, J. Phys. Condens. Matter 20, 015218 (2008).

    Article  Google Scholar 

  34. W.-M. Zhang, M. Chen, and Y.-Q. Jiang, Int. Nano Lett. 3, 1 (2013).

    Article  Google Scholar 

  35. G. Wang, X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, and J. Yao, J. Phys. Chem. C 113, 4357 (2009).

    Article  Google Scholar 

  36. A. Umar, M.M. Rahman, and Y.B. Hahn, J. Nanosci. Nanotechnol. 9, 4686 (2009).

    Article  Google Scholar 

  37. Y. Ni, J. Zhu, L. Zhang, and J. Hong, CrystEngComm 12, 2213 (2010).

    Article  Google Scholar 

  38. J. Liu, Y. Li, J. Jiang, and X. Huang, Dalton Trans. 39, 8693 (2010).

    Article  Google Scholar 

  39. A. Umar, M.M. Rahman, S.H. Kim, Y.B. Hahn, Chem. Commun. 2, 166 (2008).

  40. B. Fang, C.H. Zhang, W. Zhang, and G.F. Wang, Electrochim. Acta 55, 178 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge and cordially thank the financial assistance provided by Scientific Research Institute at King Saud University for funding through their Research Group Project No. RGP-VPP-236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafar Hussain Ibupoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahira, A., Nafady, A., Baloach, Q. et al. Ascorbic Acid Assisted Synthesis of Cobalt Oxide Nanostructures, Their Electrochemical Sensing Application for the Sensitive Determination of Hydrazine. J. Electron. Mater. 45, 3695–3701 (2016). https://doi.org/10.1007/s11664-016-4547-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4547-9

Keywords

Navigation