Skip to main content
Log in

Synthesis and Thermoelectric Properties of the YbTe-YbSb System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The syntheses of YbTe1−x Sb x (x = 0, 0.05, 0.2, 0.5, 0.8, 1) were investigated by solid state reactions and formed into dense pellets by spark plasma sintering. X-ray powder diffraction and microprobe analysis indicated no solubility of Sb in YbTe, and these phases are better described as composite phases (YbTe)1−x (YbSb) x (x = 0, 0.05, 0.2, 0.5, 0.8, 1). Thermal conductivity, electrical resistivity, and Seebeck coefficients were acquired for the larger values of x (x = 0.2, 0.5, 0.8, 1) from room temperature to 773 K, and the figure of merit was calculated. Thermal conductivities for x = 0, 0.05 are also reported; however, measurements of Seebeck coefficients and electrical resistivity were not possible due to large resistivity. The figure of merit for all samples was low, and the maximum zT measured was zT 791K = 0.018 for YbSb. Low figures of merit were primarily the result of very high resistivity in YbTe rich samples, and high thermal conductivity, and a small Seebeck coefficient in all samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Kauzlarich, S.R. Brown, and G.J. Snyder, Dalton Trans. 21, 2099 (2007).

    Article  Google Scholar 

  2. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  3. E.A. Skrabek and D.S. Trimmer, CRC Handbook Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995), p. 267.

    Google Scholar 

  4. D. Kraemer, B. Poudel, H.P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X.W. Wang, D.Z. Wang, A. Muto, K. McEnaney, M. Chiesa, Z.F. Ren, and G. Chen, Nat. Mater. 10, 532 (2011).

    Article  Google Scholar 

  5. T.M. Tritt, H. Boettner, and L. Chen, MRS Bull. 33, 366 (2008).

    Article  Google Scholar 

  6. C.T. Hsu, G.Y. Huang, H.S. Chu, B. Yu, and D.J. Yao, Appl. Energy 88, 1291 (2011).

    Article  Google Scholar 

  7. J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).

    Article  Google Scholar 

  8. E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, and G.J. Snyder, Adv. Funct. Mater. 18, 2795 (2008).

    Article  Google Scholar 

  9. S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 1873 (2006).

    Article  Google Scholar 

  10. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  Google Scholar 

  11. Y. Pei, A. LaLonde, S. Iwanaga, and G.J. Snyder, Energy Environ. Sci. 4, 2085 (2011).

    Article  Google Scholar 

  12. H. Wang, J.-H. Bahk, C. Kang, J. Hwang, K. Kim, A. Shakouri, and W. Kim, J. Mater. Chem. A 1, 11269 (2013).

    Article  Google Scholar 

  13. Y. Pei, H. Wang, Z.M. Gibbs, A.D. LaLonde, and G.J. Snyder, NPG Asia Mater. 4, e28/1 (2012).

    Article  Google Scholar 

  14. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  Google Scholar 

  15. C.M. Jaworski, M.D. Nielsen, H. Wang, S.N. Girard, W. Cai, W.D. Porter, M.G. Kanatzidis, and J.P. Heremans, Phys. Rev. B Condens. Matter Mater. Phys. 87, 045203/1 (2013).

    Article  Google Scholar 

  16. R.J. Korkosz, T.C. Chasapis, S.-H. Lo, J.W. Doak, Y.J. Kim, C.-I. Wu, E. Hatzikraniotis, T.P. Hogan, D.N. Seidman, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 136, 3225 (2014).

    Article  Google Scholar 

  17. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  Google Scholar 

  18. Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, and Z. Ren, Proc. Natl. Acad. Sci. USA 110, 13261 (2013).

    Article  Google Scholar 

  19. L.H. Brixner, J. Inorg. Nucl. Chem. 15, 199 (1960).

    Article  Google Scholar 

  20. A.S. Guloy, F. Gascoin, A. Chamoire, J.C. Tedenac, and G.J. Snyder, Phys. Status Solidi RRL 1, 265 (2007).

    Article  Google Scholar 

  21. J. Hayashi, I. Shirotani, T. Adachi, O. Shimomura, and T. Kikegawa, Philos. Mag. 84, 3663 (2004).

    Article  Google Scholar 

  22. R.T. Sanderson, J. Am. Chem. Soc. 105, 2259 (1983).

    Article  Google Scholar 

  23. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed. (Boston: PWS-Kent Pub, 1992), p. p xv.

    Google Scholar 

  24. T. Roisnel and J. Rodriguez-Carvajal, Mater. Sci. Forum 378-381, 118 (2001).

    Article  Google Scholar 

  25. J. Rodriguez-Carvajal, in Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, p. 127, 1990

  26. X.J. Liu, S.X. Gan, Z.S. Li, C.P. Wang, A.T. Tang, and F.S. Pan, CALPHAD Comput. Coupling Phase Diagrams Thermochem. 37, 132 (2012).

    Article  Google Scholar 

  27. W.M. Temmerman, Z. Szotek, A. Svane, P. Strange, H. Winter, A. Delin, B. Johansson, O. Eriksson, L. Fast, and J.M. Wills, Phys. Rev. Lett. 83, 3900 (1999).

    Article  Google Scholar 

  28. D.S. Yadav, J. Alloys Compd. 537, 250 (2012).

    Article  Google Scholar 

  29. A. Svane, W.M. Temmerman, Z. Szotek, L. Petit, P. Strange, and H. Winter, Phys. Rev. B Condens. Matter Mater. Phys. 62, 13394 (2000).

    Article  Google Scholar 

  30. N.K. Abrikosov, K.A. Zinchenko, and A.A. Eliseev, Izv. Akad. Nauk SSSR Neorg. Mater. 6, 1172 (1970).

    Google Scholar 

  31. G.D. Mahan, Solid State Phys. 51, 81 (1998).

    Google Scholar 

  32. S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, J. Solid State Chem. 180, 1414 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Kauzlarich.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

Supplementary material 1 (pdf 254 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawamura, A., Hu, Y. & Kauzlarich, S.M. Synthesis and Thermoelectric Properties of the YbTe-YbSb System. J. Electron. Mater. 45, 779–785 (2016). https://doi.org/10.1007/s11664-015-4202-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4202-x

Keywords

Navigation