Skip to main content

Advertisement

Log in

Hydrogen Gas Sensing Characteristics of Multiwalled Carbon Nanotubes Based Hybrid Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the present work, hydrogen (H2) gas sensing characteristics of hybrid composites prepared by sputtering of platinum (Pt) metal on the synthesized composites of functionalized multiwalled carbon nanotubes (F-MWCNTs) with selective metal oxides (nickel oxide and cuprous oxide) have been investigated. Both of these sensors are found to have fast response, complete resistance recovery, and good baseline stability at room temperature (25°C). These sensors stably and reversibly respond to 0.05% concentration of H2 gas at 25°C. This sensing material was characterized by x-ray diffraction, Raman spectroscopy ,and scanning electron microscopy. To the best of our knowledge, detection of such low concentration of H2 gas is reported here for the first time using F-MWCNTs/NiO/Pt and F-MWCNTs/Cu2O/Pt hybrid nanostructures at 25°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Arya, S. Krishnan, H. Silva, S. Jean, and S. Bhansali, Analyst 137, 2743 (2012).

    Article  Google Scholar 

  2. H. Gu, Z. Wang, and Y. Hu, Sensors 12, 5517 (2012).

    Article  Google Scholar 

  3. L. De Luca, A. Donato, S. Santangelo, G. Faggio, G. Messina, N. Donato, and G. Neri, Int. J. Hydrogen Energy 37, 1842 (2012).

    Article  Google Scholar 

  4. T. Zhang, S. Mubeen, N.V. Myung, and M.A. Deshusses, Nanotechnology 19, 332001 (2008).

    Article  Google Scholar 

  5. S. Srivastava, S.S. Sharma, S. Agrawala, S. Kumara, M. Singha, and Y.K. Vijay, Synth. Met. 160, 529 (2010).

    Article  Google Scholar 

  6. T.C. Ching and B.R. Huang, Sens. Actuators B 162, 108 (2012).

    Article  Google Scholar 

  7. W.J. Buttner, M.B. Post, R. Burgess, and C. Rivkin, Int. J. Hydrogen Energy 36, 2462 (2011).

    Article  Google Scholar 

  8. R.D.K. Misra, D. Depana, and J.S. Shah, Acta Biomater. 8, 1908 (2012).

    Article  Google Scholar 

  9. Z. Jia, F. Zeng, Q. Yuan, and R.D.K. Misra, Mater. Sci. Eng. B 177, 666 (2012).

    Article  Google Scholar 

  10. R.D.K. Misra, D. Depana, and J. Shah, Phys. Chem. Chem. Phys. 15, 12988 (2013).

    Article  Google Scholar 

  11. R.D.K. Misra, D. Depan, and H. Narsale, Macromol. Chem. Phys. 213, 1321 (2012).

    Article  Google Scholar 

  12. R.D.K. Misra, B. Girase, D. Depan, and J.S. Shah, Adv. Biomater. 14, 93 (2012).

    Google Scholar 

  13. H.Z. Huang, Q. Yuan, J.S. Shah, and R.D.K. Misra, Adv. Drug Deliv. Rev. 63, 1332 (2011).

    Article  Google Scholar 

  14. H. Steinebach, S. Kannan, L. Rieth, and F. Solzbacher, Sens. Actuators B 151, 162 (2010).

    Article  Google Scholar 

  15. M. Tonezzer and R.G. Lacerda, Physica E 44, 1098 (2010).

    Article  Google Scholar 

  16. Z.H. Lim, Z.X. Chia, M. Kevin, A.S.W. Wong, and G.W. Ho, Sens. Actuators B 151, 121 (2010).

    Article  Google Scholar 

  17. G. Chen and Y. Kawazoe, Phys. Rev. B 73, 125410 (2006).

    Article  Google Scholar 

  18. J. Chen, M. Wang, B. Liu, Z. Fan, K. Cui, and Y. Kuang, J. Phys. Chem B 110, 11775 (2006).

    Article  Google Scholar 

  19. P. Pannopard, P. Khongpracha, M. Probst, and J. Limtrakul, J. Mol. Graph. Model. 28, 62 (2009).

    Article  Google Scholar 

  20. X. Zhang, Z. Dai, L. Wei, N. Liang, and X. Wu, Sensors 13, 15159 (2013).

    Article  Google Scholar 

  21. A. Kaniyoor and S. Ramaprabhu, Carbon 49, 227 (2011).

    Article  Google Scholar 

  22. M.K. Kumar and S. Ramaprabhu, Phys. Chem. B 110, 11291 (2006).

    Article  Google Scholar 

  23. L.K. Randeniya, P.J. Martin, and A. Bendavid, Carbon 50, 1786 (2012).

    Article  Google Scholar 

  24. S. Trocino, A. Donato, M. Latino, N. Donato, S.G. Leonardi, and G. Neri, Sensors 12, 12361 (2012).

    Article  Google Scholar 

  25. S. Santangelo, G. Faggio, G. Messina, E. Fazio, F. Neri, and G. Neri, Sens. Actuators B 178, 473 (2013).

    Article  Google Scholar 

  26. S. Dhall, N. Jaggi, and R. Nathawat, Sens. Actuators A 201, 221 (2013).

    Article  Google Scholar 

  27. S. Dhall and N. Jaggi, Sens. Lett. 12, 1 (2014).

    Article  Google Scholar 

  28. J.Y. Eom, H.S. Kwon, J. Liu, and O. Zhou, Carbon 42, 2589 (2004).

    Article  Google Scholar 

  29. C.N. Rao and A. Govindaraj, Nanotubes and Nanowires, 2nd ed. (London: RSC Publishing, 2011).

    Google Scholar 

  30. K. Sadowska, K.P. Roberts, R. Wiser, J.F. Biernat, E. Jablonowska, and R. Bilewicz, Carbon 47, 1501 (2009).

    Article  Google Scholar 

  31. Z. Wang, Q. Zhang, D. Kuehner, X. Xu, A. Ivaska, and L. Niu, Carbon 46, 1687 (2008).

    Article  Google Scholar 

  32. G. Maurin, I. Stepanek, P. Bernier, J.F. Colomer, J.B. Nagy, and F. Henn, Carbon 39, 1273 (2001).

    Article  Google Scholar 

  33. S. Hussain, P. Jha, A. Chouksey, R. Raman, S.S. Islam, T. Islam, and P.K. Choudhary, J. Mod. Phys. 2, 538 (2011).

    Article  Google Scholar 

  34. L. Dennany, P. Sherrell, J. Chen, P.C. Innis, G.G. Wallace, and A.I. Minett, Phys. Chem. Chem. Phys. 12, 4135 (2010).

    Article  Google Scholar 

  35. F.J. Arregui, Sensors based on nanostructured materials (New York: Springer, 2009).

    Book  Google Scholar 

  36. N.D. Hoa, S.Y. An, N.Q. Dung, N.V. Quy, and D. Kim, Sens. Actuators B 146, 239 (2010).

    Article  Google Scholar 

  37. S. Dhall, K. Sood, and N. Jaggi, Meas. Sci. Technol. 25, 085103 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support and help for the fabrication of the devices and sensing measurements carried out at the Center of Excellence in Nanoelectronics (CEN) under Indian Nanoelectronics Users’ Programme at Indian Institute of Technology (IIT), Bombay. We also acknowledge the Central Scientific Instruments Organization (CSIO), Chandigarh, Punjab, for providing the Raman facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neena Jaggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhall, S., Jaggi, N. Hydrogen Gas Sensing Characteristics of Multiwalled Carbon Nanotubes Based Hybrid Composites. J. Electron. Mater. 45, 695–702 (2016). https://doi.org/10.1007/s11664-015-4176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4176-8

Keywords

Navigation