Skip to main content
Log in

Electrical Behavior of SnO2 Polycrystalline Ceramic Pieces Formed by Slip Casting: Effect of Surrounding Atmosphere (Air and CO)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Pieces of porous polycrystalline SnO2 with and without cobalt have been formed by the slip-casting method, using ceramic powders synthesized by the controlled precipitation method. A suitable␣methodology was developed for forming and sintering the pieces to enable controlled modification of their microstructure, principally grain size, porosity, and type of intergranular contacts. Better control of the microstructure was obtained in the samples containing cobalt. In these, predominance of open necks and intergranular contacts was observed, which can represent Schottky barriers. Because of its good structural homogeneity, porosity, and small grain size (of the order of 1 μm), the sample with 2 mol.% Co sintered at 1250°C for 2 h was selected for electrical characterization by complex impedance spectroscopy, varying the operating temperature, concentration and nature of the surrounding gas (air or CO), and bias voltage. The resulting R p and C p curves were very sensitive to variation in these parameters, being most obvious for the C p curves, which showed a phenomenon of low-frequency dispersion when bias voltages other than zero were used, in the presence of O2, and at operating temperature of 280°C. The electrical behavior of the SnO2 with 2 mol.% Co sample sintered at 1250°C was consistent with the nature and microstructural characteristics of the active material and was justified based on the presence of shallow- and deep-type defects, and variations in barrier height and width, caused by adsorption of gas molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.H. Brattain and J. Bardeen, Bell Syst. Technol. J. 32, 1 (1953).

    Article  Google Scholar 

  2. G. Heiland, Z. Phys. A 138, 459 (1954).

    Article  Google Scholar 

  3. M.J. Madou and S.R. Morrison, Chemical Sensing with Solid State Devices (Boston: Academic, 1989).

    Google Scholar 

  4. E. Comini, G. Faglia, and G. Sberveglieri, eds., Solid State Gas Sensing (New York: Springer Science, 2009).

    Google Scholar 

  5. R. Jeaniso and O.K. Tan, eds., Semiconductor Gas Sensors (Cambridge: Woodhead, 2013).

    Google Scholar 

  6. G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices (Boca Raton: Taylor & Francis, CRC, 2012).

    Google Scholar 

  7. K. Ihokura and J. Watson, The Stannic Oxide Gas Sensor (New York: CRC Press, 1994).

    Google Scholar 

  8. W. Hagen, R.E. Lambrich, and J. Lagois, Adv. Solid State Phys. 23, 259 (1983).

    Article  Google Scholar 

  9. J.F. McAleer, P.T. Mosley, J.O.W. Norris, and D.E. Williams, J. Chem. Soc. Faraday Trans. 1, 1323 (1987).

    Article  Google Scholar 

  10. LYu Kupriyanov, eds., Semiconductor Sensor in Physicochemical Studies, vol. 4 (Amsterdam: Elsevier Science, 2002).

    Google Scholar 

  11. N. Yamazoe, Sensors Actuators B Chem. 5, 7 (1991).

    Article  Google Scholar 

  12. W. Göpel and K.D. Schierbaum, Sensors Actuators B Chem. 26, 1 (1995).

    Article  Google Scholar 

  13. C.C. Wang, S.A. Akbar, and M.J. Madou, J. Electroceram. 2, 273 (1998).

    Article  Google Scholar 

  14. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001).

    Article  Google Scholar 

  15. N.M. Beekmans, J. Chem. Soc. Faraday Trans. 1, 31 (1978).

    Article  Google Scholar 

  16. J.O. Cope and I.D. Campbell, J. Chem. Soc. Faraday Trans. 1, 1 (1973).

    Article  Google Scholar 

  17. S. Baidyaroy and P. Mark, Surf. Sci. 30, 53 (1972).

    Article  Google Scholar 

  18. V. Lantto, T.T. Rantala, and T.S. Rantala, J. Eur. Ceram. Soc. 21, 1961 (2001).

    Article  Google Scholar 

  19. C. Malagú, V. Guidi, M. Stefancich, M.C. Carotta, and G. Martinelli, J. Appl. Phys. 91, 808 (2002).

    Article  Google Scholar 

  20. M.A. Ponce, M.S. Castro, and C.M. Aldao, Mater. Sci. Eng. B 111, 14 (2004).

    Article  Google Scholar 

  21. N. Barsan, D. Koziej, and U. Weimar, Sensors Actuators B Chem. 121, 18 (2007).

    Article  Google Scholar 

  22. N. Yamazoe and K. Shimanoe, Sensors Actuators B Chem. 138, 100 (2009).

    Article  Google Scholar 

  23. A. Giberti, M.C. Carotta, C. Malagú, C.M. Aldao, M.S. Castro, M.A. Ponce, and R. Parra, Phys. Status Solidi A 208, 118 (2010).

    Article  Google Scholar 

  24. V. Snejdar and J. Jerhot, Thin Solid Films 37, 303 (1976).

    Article  Google Scholar 

  25. G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007).

    Article  Google Scholar 

  26. C. Altavilla and E. Ciliberto, eds., Inorganic Nanoparticles: Synthesis, Applications and Perspectives, chap. 4 (Boca Raton: CRC Press, Taylos & Francis, 2011), pp 69–107

  27. A. Jones, T.A. Jones, B. Mann, and J.G. Firth, Sensors Actuators B Chem. 5, 75 (1984).

    Article  Google Scholar 

  28. M.J. Willett, V.N. Burganos, C.D. Tsakiroglou, and A.C. Payatakes, Sensors Actuators B Chem. 53, 76 (1998).

    Article  Google Scholar 

  29. J.P. Ahn, J.H. Kim, J.K. Park, and M.Y. Huh, Sensors Actuators B Chem. 99, 18 (2004).

    Article  Google Scholar 

  30. M.N. Rahaman, Ceramic Processing, chap. 4 and 7 (Boca Raton: CRC Press, Taylor & Francis, 2007), pp. 279–336.

  31. P. Boch and J.Cl. Niépce, Ceramic Materials: Processes, Properties and Applications, chap. 5 (London: ISTE, 2007), pp. 123–197.

  32. R.M. German, Sintering Theory and Practice (New York: Wiley, 1996).

    Google Scholar 

  33. R.H.R. Castro and K. van Benthem, eds., Sintering: Mechanisms of Convention Nanodensification and Field Assisted Processes (Berlin: Engineering Materials Springer Verlag, 2013).

    Google Scholar 

  34. C. Ararat, A. Mosquera, R. Parra, M.S. Castro, and J.E. Rodriguez-Paéz, Mater. Chem. Phys. 101, 433 (2007).

    Article  Google Scholar 

  35. A. Ortiz, M. Mendoza, and J.E. Rodríguez-Páez, Mater. Res. 4, 265 (2001).

    Article  Google Scholar 

  36. C.E. Ararat, A. Montenegro, and J.E. Rodríguez-Páez, Quim. Nova 30, 1578 (2007).

    Article  Google Scholar 

  37. D. Amalric-Popescu and F. Bozon-Verduraz, Catal. Today 70, 139 (2010).

    Article  Google Scholar 

  38. P. Serrini and V. Briois, Thin Solid Films 304, 13 (1997).

    Article  Google Scholar 

  39. M. Graf, A. Gurlo, N. Barsan, U. Weimar, and A. Hierlemann. J. Nanopart. Res. 8, 823 (2006).

    Article  Google Scholar 

  40. R. Metz, D. Koumeir, J. Morel, J. Pansiot, M. Houabes, and M. Hassanzadeh, J. Eur. Ceram. Soc. 28, 829 (2008).

    Article  Google Scholar 

  41. J.A. Cerri, E.R. Leite, D. Gouvea, E. Longo, and J.A. Varela, J. Am. Ceram. Soc. 74, 799 (1996).

    Google Scholar 

  42. G. Blatter and F. Greuter, Polycrystalline Semiconductors: Physical Properties and Applications. Springer Series in Solid-State Sciences, vol. 57, ed. G. Harbeke (Berlin: Springer-Verlag, 1985), pp. 118–137.

  43. G. Blatter and F. Greuter, Phys. Rev. B 34, 8555 (1986).

    Article  Google Scholar 

  44. A.K. Jonscher, J. Phys. D Appl. Phys. 32, R57 (1999).

    Article  Google Scholar 

  45. D. Khol, Sensors Actuators B Chem. 18, 71 (1989).

    Article  Google Scholar 

  46. J.C. Phillips and G. Lucovsky, Bonds and Bands in Semiconductors, 2nd ed. (New York: Momentum, 2010).

    Google Scholar 

  47. F. Greuter, Solid State Ionics 75, 67 (1995).

    Article  Google Scholar 

  48. A. Broniatowski, Polycrystalline Semiconductors: Physical Properties and Applications. Springer Series in Solid-State Sciences, vol. 57, ed. G. Harbeke (Berlin: Springer-Verlag, 1985), pp. 95–117

  49. F. Greuter and G. Blatter, Semicond. Sci. Technol. 5, 111 (1990).

    Article  Google Scholar 

  50. G.E. Pike, Grain Boundaries in Semiconductors, ed. H.J. Leamy, G.E. Pike, and C.H. Seager (London: Elsevier Science, 1982), pp. 369–379

  51. G.E. Pike, Phys. Rev. B 30, 795 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the VRI of the University of Cauca for funding Project ID 2731 and for providing logistical support. We are especially grateful to Colin McLachlan for suggestions relating to the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ochoa-Muñoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-Paz, C.J., Ochoa-Muñoz, Y., Ponce, M.A. et al. Electrical Behavior of SnO2 Polycrystalline Ceramic Pieces Formed by Slip Casting: Effect of Surrounding Atmosphere (Air and CO). J. Electron. Mater. 45, 576–593 (2016). https://doi.org/10.1007/s11664-015-4153-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4153-2

Keywords

Navigation