Skip to main content
Log in

Thermoelectric Power Measurements of xSb-(60-x)V2O5-40TeO2 Glasses

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bulk xSb-(60-x)V2O5-40TeO2 glass systems (with 0 ≤ x ≤ 15 in mol.%) were prepared by using the standard melt quenching procedure, and their Seebeck coefficients, S, were measured within the temperature range of 250–470 K. For the understudied samples, the thermoelectric powers at typical temperatures of 296 K, 370 K and 407 K were measured, and were in the ranges (−405) to (−698) μVK−1, (−394) to (−685) μVK−1 and (−392) to (−691) μVK−1, respectively. The selection of typical temperatures aims at the evaluation of the trend of figure of merit in these glasses. Based on the negative sign of S, the present glasses were found to be n-type semiconductors; also, the experimental relationship between S and C V (C V = [V4+]/V tot is the ratio of the content of reduced vanadium ions) satisfied the theoretical Heikes formula, relating S to ln(C V/1 − C V), and also the Mackenzie formula, relating S to ln([V5+]/[V4+]). The parameter \( \alpha^{\prime} \) in Heikes formula was determined to be ≪1 and so the small polaron hopping conduction mechanism was certified to occur in these glasses; this result confirms the previously reported results of direct current (DC) electrical conduction experiments on the same samples. Results of thermoelectric measurements show the compositional dependence of S on Sb content and C V, indicating that S increases with the increase in Sb content; these results show that the dominant factor determining S is C V. Also, figure of merit was determined for these glasses, which show the highest value for 60V2O5-40TeO2 glass system, as a good candidate in thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.M. Rowe, Thermoelectrics Handbook (CRC Press, 2005) p. 66.

  2. D. Souri, P. Azizpour, and H. Zaliani, J. Electron. Mater. 4, 3672 (2014).

    Article  Google Scholar 

  3. D. Souri and M. Elahi, Phys. Scr. 75, 219 (2007).

    Article  Google Scholar 

  4. A. Avila and R. Asomoza, Solid State Electron. 44, 17 (2000).

    Article  Google Scholar 

  5. A. Abdel-All, A. Elshafie, and M.M. Elhawary, Vacuum 59, 845 (2000).

    Article  Google Scholar 

  6. D. Souri, M. Mohammadi, and H. Zaliani, Electron. Mater. Lett. 10, 1103 (2014).

    Article  Google Scholar 

  7. D. Souri and M. Elahi, Czech J. Phys. 56, 419 (2006).

    Article  Google Scholar 

  8. D. Souri, J. Non-Cryst. Solids 356, 2181 (2010).

    Article  Google Scholar 

  9. M. Pal, K. Hirota, Y. Tsujigami, and H. Sakata, J. Phys. D Appl. Phys. 34, 459 (2001).

    Article  Google Scholar 

  10. B. Santic, A. Mogus-Milankovic, and D.E. Day, J. Non-Cryst. Solids 296, 65 (2001).

    Article  Google Scholar 

  11. B.I. Sharma and A. Srinvasan, Phys. Status Solidi B 229, 1405 (2002).

    Article  Google Scholar 

  12. H. Mori and H. Sakata, J. Mater. Sci. 31, 1621 (1996).

    Article  Google Scholar 

  13. D. Souri, J. Phys. D Appl. Phys. 41, 105102 (2008).

    Article  Google Scholar 

  14. M.A. Sidkey, A. Abd El-Moneim, and L. Abd El-Latif, Mater. Chem. Phys. 61, 103 (1999).

    Article  Google Scholar 

  15. G. Turky and M. Dawy, Mater. Chem. Phys. 77, 48 (2002).

    Article  Google Scholar 

  16. T. Allersma and J.D. Mackenzie, J. Chem. Phys. 47, 1406 (1967).

    Article  Google Scholar 

  17. S.K. Dalafave and J. Ziegler, J. Mater. Sci. Lett. 17, 1463 (1998).

    Article  Google Scholar 

  18. A.W. Vanherwaarden and P.M. Sarro, Sens. Actuators 10, 321 (1986).

    Article  Google Scholar 

  19. M. Trakalo, C.J. Moore, J.D. Leslie, and D.E. Brodlie, Rev. Sci. Instrum. 55, 754 (1984).

    Article  Google Scholar 

  20. B. Poumellec, F. Marcelet, F. Lagnel, and J.F. Marucco, J. Phys. E 21, 159 (1988).

    Article  Google Scholar 

  21. R.R. Heikes, A.A. Maradudine, and R.C. Miller, Ann. Phys. NY 8, 733 (1963).

    Google Scholar 

  22. R.R. Heikes, Thermoelectricity, ed. R.R. Heikes and R.W. Ure (New York: Interscience, 1961), p. 2502.

    Google Scholar 

  23. M.F. Thrope, Chemistry, Physics and Materials Science of Thermoelectric Materials, ed. M.G. kanatzidis, S.D. Mahanti, and T.P. Hogan (New York: Springer Science + Business Media, 2003), p. 64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Souri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souri, D., Siahkali, Z. & Moradi, M. Thermoelectric Power Measurements of xSb-(60-x)V2O5-40TeO2 Glasses. J. Electron. Mater. 45, 307–311 (2016). https://doi.org/10.1007/s11664-015-4071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4071-3

Keywords

Navigation