Skip to main content
Log in

In Situ Polymerization and Characterization of Highly Conducting Polypyrrole Fish Scales for High-Frequency Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polypyrrole (Ppy) thin films on alumina were synthesized by an in situ chemical oxidative polymerization method at 300 K with equal monomer-to-oxidant ratio. Fourier transform infrared spectroscopy (FTIR) and FT-Raman spectroscopy confirmed the formation of Ppy. A thickness-dependent change from cauliflower to fish-scale morphology was observed. Microwave properties such as transmission, reflection, shielding effectiveness, permittivity, and microwave conductivity are reported in the frequency range from 8 GHz to 12 GHz. The direct-current (DC) conductivity varied from 9.45 × 10−3 S/cm to 17.29 × 10−3 S/cm, whereas the microwave conductivity varied from 63.07 S/cm to 349.08 S/cm. The shielding effectiveness varied between 6.18 dB and 10.39 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Dhawan, N. Singh, and S. Venkatachalam, Synth. Met. 129, 261 (2002).

    Article  Google Scholar 

  2. P. Chandrasekhar and K. Naishadham, Synth. Met. 105, 115 (1999).

    Article  Google Scholar 

  3. J.U. Kim, I.S. Jeong, S.I. Moon, and H.B. Gu, J. Power Sources 97, 450 (2001).

    Article  Google Scholar 

  4. J.H. Chen, Z.P. Huang, D.Z. Wang, S.X. Yang, W.Z. Li, J.G. Wen, and Z.F. Ren, Synth. Met. 125, 289 (2001).

    Article  Google Scholar 

  5. K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin, and E. Frackowiak, Chem. Phys. Lett. 347, 36 (2001).

    Article  Google Scholar 

  6. B. Kumar, B.K. Kaushik, and Y.S. Negi, J. Mater. Sci. 25, 1 (2014).

    Google Scholar 

  7. J.W. Goodwin, G.M. Markham, and B. Vincent, J. Phys. Chem. B 101, 1961 (1997).

    Article  Google Scholar 

  8. V.T. Truong, P.K. Lai, B.T. Moore, R.F. Muscat, and M.S. Russo, Synth. Met. 110, 7 (2000).

    Article  Google Scholar 

  9. L.J. Buckley and M. Eashov, Synth. Met. 78, 1 (1996).

    Article  Google Scholar 

  10. S.V. Jadhav and V. Puri, Synth. Met. 158, 883 (2008).

    Article  Google Scholar 

  11. T.A. Skotheim, Handbook of Conducting Polymers (New York: Marcel Dekker, 1986).

    Google Scholar 

  12. M. Yamaura, T. Hagiwara, and K. Iwata, Synth. Met. 26, 209 (1988).

    Article  Google Scholar 

  13. S.P. Armes, Synth. Met. 20, 365 (1987).

    Article  Google Scholar 

  14. R.K. Bunting, K. Swarat, and D.J. Yan, Chem. Educ. 74, 421 (1997).

    Article  Google Scholar 

  15. M.C. Henry, C.C. Hsueh, B.P. Timko, and M.S. Freund, J.␣Electrochem. Soc. 148, D155 (2001).

    Article  Google Scholar 

  16. V. Shaktawat, N. Jain, R. Saxena, N.S. Saxena, K. Sharma, and T.P. Sharma, Polym. Bull. 57, 535 (2006).

    Article  Google Scholar 

  17. A. Joshi and S.A. Gangal, DAE Solid State Physics Symposium, Mysore 297, 236 (2007).

  18. R. Turcu, A. Darabont, and A.N. Nan, J. Optoelectron. Adv. Mater. 8, 643 (2006).

    Google Scholar 

  19. H. Gu, Y. Huang, and X. Zhang, Polymer 53, 801 (2012).

    Article  Google Scholar 

  20. S.A. Jamadade, S.V. Jadhav, and V. Puri, J. Non-Cryst. Solids 357, 1177 (2011).

    Article  Google Scholar 

  21. X. Liang, Z. Wen, Y. Liu, F. Zhang, H. Jin, M. Wu, and X. Wu, J. Power Sources 206, 409 (2012).

    Article  Google Scholar 

  22. F. Chen, J. Zhang, F. Wang, and G. Shi, J. App. Polym. Sci. 89, 3390 (2003).

    Article  Google Scholar 

  23. H. Javadi, K. Cromack, A. MacDiarmid, and A.J. Epstein, Phys. Rev. B 39, 3579 (1989).

    Article  Google Scholar 

  24. X. Fan, J. Guan, W. Wang, and G. Tong, J. Phys. D Appl. Phys. 42, 075006 (2009).

    Article  Google Scholar 

  25. K. Lakshmi, J. Honey, J. Rani, K.E. George, and K.T. Mathew, Microw. Opt. Techn. Lett. 50, 504 (2008).

    Article  Google Scholar 

  26. N.B. Velhal, N.D. Patil, S.A. Jamdade, and V.R. Puri, Appl. Surf. Sci. 307, 129 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

V.R.P. gratefully acknowledges UGC India for Award of Research Scientist ‘C’. N.B.V. acknowledges DAE-BRNS (2012/34/36/BRNS/1034) for their financial support. The authors also thank UGC-SAP and DST-FIST for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya R. Puri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velhal, N.B., Patil, N.D. & Puri, V.R. In Situ Polymerization and Characterization of Highly Conducting Polypyrrole Fish Scales for High-Frequency Applications. J. Electron. Mater. 44, 4669–4675 (2015). https://doi.org/10.1007/s11664-015-3907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3907-1

Keywords

Navigation