Skip to main content
Log in

Effect of Eu Doping on the Structural, Electrical, and Dielectric Properties of K0.5Na0.5NbO3 Ceramics for High-Temperature Capacitor Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural and dielectric properties of Eu-doped K0.5Na0.5NbO3 (KNN) ceramics were investigated as a potential candidate for use in high-temperature capacitors with working temperature beyond 200°C. x-Ray diffraction results showed that tetragonal and cubic structure distortions occurred for low- and high-concentration doping, respectively. With increase of Eu content, the dielectric anomaly of the tetragonal–cubic transition was depressed and shifted to low temperature, while the temperature of the orthorhombic–tetragonal transition remained unchanged. A dielectric relaxation associated with oxygen vacancies was detected in the paraelectric phase region. The activation energy of oxygen vacancies depended on the Eu concentration and the defect compensation mechanism. KNN doped with 3 mol% Eu (KNN3Eu) showed good dielectric temperature stability (±10%) with relatively high permittivity (>1800 at 225°C) over the temperature range from 119°C to 495°C, representing a good starting point for development of high-temperature capacitor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, and M. Christopher, IEEE Trans. Electron. Packag. Manuf. 27, 164 (2004).

    Article  Google Scholar 

  2. N. Raengthon, T. Sebastian, D. Cumming, I.M. Reaney, and D.P. Cann, J. Am. Ceram. Soc. 95, 3554 (2012).

    Article  Google Scholar 

  3. K. Bridger, A.V. Cooke, and W.A. Schulze, U.S. Patent No. US7,697,263 B2 (13 April 2010).

  4. J.B. Lim, S.J. Zhang, N. Kim, and T.R. Shrout, J. Am. Ceram. Soc. 92, 679 (2009).

    Article  Google Scholar 

  5. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, and J.␣Rödel, Appl. Phys. Lett. 91, 112906 (2007).

    Article  Google Scholar 

  6. L. Liu, D. Shi, M. Knapp, H. Ehrenberg, L. Fang, and J.␣Chen, J. Appl. Phys. 116, 184104 (2014).

    Article  Google Scholar 

  7. R. Dittmer, W. Jo, D. Damjanovic, and J. Rödel, J. Appl. Phys. 109, 034107 (2011).

    Article  Google Scholar 

  8. R.D. Shannon, Acta Cryst. A32, 751 (1976).

    Article  Google Scholar 

  9. F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli, and C. Galassi, Phys. Rev. B 81, 144124 (2010).

    Article  Google Scholar 

  10. L. Liu, Y. Huang, Y. Li, L. Fang, H. Dammak, H. Fan, and M. Pham, Mater. Lett. 68, 300 (2012).

    Article  Google Scholar 

  11. H. Qian and L.A. Bursill, Int. J. Mod. Phys. B 10, 2007 (1996).

    Article  Google Scholar 

  12. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994).

    Article  Google Scholar 

  13. X. Yao, Z. Chen, and L.E. Cross, J. Appl. Phys. 54, 3399 (1983).

    Article  Google Scholar 

  14. L. Liu, H. Fan, L. Fang, X. Chen, H. Dammak, and M. Pham, Mater. Chem. Phys. 117, 138 (2009).

    Article  Google Scholar 

  15. C. Ang, Z. Yu, and L.E. Cross, Phys. Rev. B 62, 228 (2000).

    Article  Google Scholar 

  16. L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, and C. Hu, Appl. Phys. A 104, 1047 (2011).

    Article  Google Scholar 

  17. B.S. Kang, S.K. Choi, and C.H. Park, J. Appl. Phys. 94, 1904 (2003).

    Article  Google Scholar 

  18. A.K. Jonscher, J. Phys. D Appl. Phys. 32, R57 (1999).

    Article  Google Scholar 

  19. L. Liu, Y. Huang, Y. Li, M. Wu, L. Fang, C. Hu, and Y. Wang, Phys. B 407, 136 (2012).

    Article  Google Scholar 

  20. S. Wu, W. Zhu, L. Liu, D. Shi, S. Zheng, Y. Huang, and L. Fang, J. Electron. Mater. 43, 1055 (2014).

    Article  Google Scholar 

  21. H.S. Shulman, D. Damjanovic, and N. Setter, J. Am. Ceram. Soc. 83, 528 (2000).

    Article  Google Scholar 

  22. L. Liu, M. Wu, Y. Huang, Z. Yang, L. Fang, and C.Z. Hu, Mater. Chem. Phys. 126, 769 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The research work was supported by the National Natural Science Foundation of China (Grant No. 51275217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Lh., Wang, Sl. & Liu, Fh. Effect of Eu Doping on the Structural, Electrical, and Dielectric Properties of K0.5Na0.5NbO3 Ceramics for High-Temperature Capacitor Applications. J. Electron. Mater. 44, 3408–3414 (2015). https://doi.org/10.1007/s11664-015-3905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3905-3

Keywords

Navigation