Skip to main content
Log in

Electron-Transport Properties of a ZnMgO/ZnO Hetero Structure and the Effect of Interface Roughness and ZnMgO Thickness

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electron-transport properties of a Zn\(_{1-x}\)Mg\(_x\)O/ZnO hetero structure were studied by use of an ensemble Monte Carlo technique. There was no intentional doping in the profile and the entire charge is because of polarization of charges at the interface. Interface roughness, and the intensity of acoustic and optic phonon scattering were used in the ensemble Monte Carlo method to find the transport properties of the two-dimensional electron gas (2DEG). The low-field mobility characteristics of the structure were determined as a function of temperature, the thickness of the ZnMgO layer, and the interface roughness. The interface roughness was found to have a very large effect on the drift mobility of carriers, especially at low temperatures. It was observed that as the thickness of the ZnMgO increases the concentration of electrons increases whereas the mobility of the electrons decreases. The low-field mobility values obtained from ensemble Monte Carlo simulations were in agreement with published experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Look, Semicond. Sci. Technol. 20, S55 (2005).

  2. K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, and M. Yano, Appl. Phys. Lett. 87, 112106 (2005)

  3. K. Koike, K. Hama, I. Nakashima, G. Takada, M. Ozaki, K. Ogata, S. Sasa, M. Inoue, and M. Yano, Jpn. J. Appl. Phys. 43, L1372 (2010)

  4. J.D. Ye, S. Pannirselvam, S.T. Lim, J.F. Bi, X.W. Sun, G.Q. Lo, and K.L. Teo, Appl. Phys. Lett. 97, 111908 (2010)

  5. H. Chen, S. Gu, J. Liu, J. Ye, K. Tang, S. Zhu, and Y. Zheng, Appl. Phys. Lett. 99, 211906 (2011)

  6. A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki, Science 315, 1388 (2007)

  7. H. Tampo, H. Shibata, K. Maejima, A. Yamada, K. Matsubara, P. Fons, S. Kashiwaya, S. Niki, Y. Chiba, T. Wakamatsu, and H. Kanie, Appl. Phys. Lett. 93, 202104 (2008)

  8. M. Yano, K. Hashimoto, K. Fujimoto, K. Koike, S. Sasa, M. Inoue, Y. Uetsuji, T. Ohnishi, and K. Inaba, J. Cryst. Growth 301–302, 353 (2007)

  9. V. Petukhov, A. Bakin, I. Tsiaoussis, J. Rothman, S. Ivanov, J. Stoemenos, and A. Waag, J. Cryst. Growth 323, 111 (2011)

  10. M. Demir, Z. Yarar, and M. Ozdemir, Solid State Commun. 158, 29 (2013)

  11. H. Tampo, H. Shibata, K. Matsubara, A. Yamada, P. Fons, S. Niki, M. Yamagata, and H. Kanie, Appl. Phys. Lett. 89, 132113 (2006)

  12. H. Tampo, K. Matsubara, A. Yamada, H. Shibata, P. Fons, M. Yamagata, H. Kanie, and S. Niki, J. Cryst. Growth 301–302, 358 (2007)

  13. S. Sasa, M. Ozaki, K. Koike, M. Yano, and M. Inoue, Appl. Phys. Lett. 89, 053502 (2006)

  14. H. Tampo, H. Shibata, K. Maejima, T.W. Chiu, H. Itoh, A. Yamada, K. Matsubara, P. Fons, Y. Chiba, T. Wakamatsu, Y. Takeshita, H. Kanie, and S. Niki, Appl. Phys. Lett. 94, 242107 (2009)

  15. Q. Li, J.W. Zhang, Z.Y. Zhang, F.N. Li, and X. Hou, Semicond. Sci. Technol. 29, 115001 (2014)

  16. M. Amirabbasi, Modern Phys. Lett. B 27, 1350170 (2013)

  17. E. Baghani and S.K. O’Leary, J. Appl. Phys. 114, 23703 (2013)

  18. L. Sang, S.Y. Yang, G.P. Liu, G.J. Zhao, B.C. Liu, C.Y. Gu, H.Y. Wei, X.L. Liu, Q.S. Zhu, and Z.G. Wang, IEEE Trans. Electron Devices 60, 2077 (2013)

  19. C.-I. Huang, H.-A. Chin, Y.-R. Wu, I.-C. Cheng, J.Z. Chen, K.-C. Chiu, and T.-S. Lin, IEEE Trans. Electron Devices 57, 696 (2010)

  20. Z. Yarar, J. Electron. Mater. 40, 466 (2011)

  21. A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 75, 980 (1999)

  22. T. Makino, C.H. Chia, T.T. Nguen, H.D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Appl. Phys. Lett. 77, 975 (2000)

  23. K. Koike, K. Hama, I. Nakashima, G. Takada, K. Ogata, S. Sasa, M. Inoue, and M. Yano, J. Cryst. Growth 278, 288 (2005)

  24. C. Jagadish and S. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures (Amsterdam: Elsevier, 2006)

  25. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998)

  26. Z. Yarar, B. Ozdemir, and M. Ozdemir, Phys. Status Solidi B 242, 2872 (2005)

  27. Z. Yarar, B. Ozdemir, and M. Ozdemir, J. Electron. Mater. 36, 1303 (2007)

  28. T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Özdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, B., Yarar, Z., Özdemir, M. et al. Electron-Transport Properties of a ZnMgO/ZnO Hetero Structure and the Effect of Interface Roughness and ZnMgO Thickness. J. Electron. Mater. 44, 3733–3737 (2015). https://doi.org/10.1007/s11664-015-3776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3776-7

Keywords

Navigation