Skip to main content
Log in

Effect of Phonon Confinement on Optical Phonon-Mediated Carrier Capture into CdSe/ZnS Quantum Dots

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Electron capture induced by carrier heating in the CdSe/ZnS spherical quantum dot–quantum well structure is studied theoretically. The capture rate has been calculated by taking into account the phonon confinement effect. Numerical results for the capture rate as a function of dot radius, lattice temperature, and electron density in the CdSe/ZnS/H2O quantum dot (QD) system are obtained and discussed. It has been shown that the capture rate of an electron from the barrier region to the quantum dot ground state due to the emission of confined or interface optical phonons exhibits strong resonances versus dot radius. Our results reveal that the capture time is larger than 1 ns across broad ranges of quantum dot radius. We have found the increase of the capture rate due to emission of LO1 as well as IO/SO phonons with increasing temperature. However, for structures with lower electron densities (n ≤ 1016 cm−3), the monotonic behavior of the capture rate in case of IO/SO phonon interactions is broken and a local maximum in the temperature dependence appears. In contrast to the GaAs/AlAs spherical quantum dot–quantum well structure, the capture rate in CdSe/ZnS/H2O QDs is very strongly dependent on the electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Akiyama, M. Ekawa, M. Sugawara, H. Sudo, K. Kawaguchi, A. Kuramata, H. Ebe, K. Morito, H. Imai, and Y. Arakawa, Opt. Fiber Commun. 8, PDP12 (2004).

  2. P. Borri, S. Schneider, W. Langbein, and D. Bimberg, J. Opt. A 8, S33 (2006).

    Article  Google Scholar 

  3. T. Piwonski, I. O’Driscoll, J. Houlihan, G. Huyet, and R.J. Manning, Appl. Phys. Lett. 90, 122108 (2007).

    Article  Google Scholar 

  4. I. O’Driscoll, T. Piwonski, C.-F. Schleussner, J. Houlihan, G. Huyet, and R.J. Manning, Appl. Phys. Lett. 91, 071111 (2007).

    Article  Google Scholar 

  5. R. Ferreira and G. Bastard, Appl. Phys. Lett. 74, 2818 (1999).

    Article  Google Scholar 

  6. I. Magnusdottir, A.V. Uskov, S. Bischoff, B. Tromborg, and J. Mørk, J. Appl. Phys., 925982 (2002).

  7. I. Magnusdottir, A.V. Uskov, R. Ferreira, G. Bastard, J. Mørk, and B. Tromborg, Appl. Phys. Lett. 81, 4318 (2002).

    Article  Google Scholar 

  8. T. Inoshita and H. Sakaki, Phys. Rev. B 46, 7260 (1992).

    Article  Google Scholar 

  9. L. Zhang, C.-Y. Chen, and H.-J. Xie, Phys. Rev. B 66, 205326 (2002).

    Article  Google Scholar 

  10. Y. Xing, X.X. Liang, and Z.P. Wang, Mod. Phys. Lett. B 27, 1350134 (2013).

    Article  Google Scholar 

  11. A.P. Alivisatos, Science 271, 933 (1996).

    Article  Google Scholar 

  12. Y. Liu, H.Y. Qiu, Y. Xu, D. Wu, M.J. Li, J.X. Jiang, and G.Q. Lai, J. Nanopart. Res. 9, 745 (2007).

    Article  Google Scholar 

  13. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P.V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008).

    Article  Google Scholar 

  14. T. Lopez-Luke, A. Wolcott, L.P. Xu, S.W. Chen, Z.H. Wen, J.H. Li, E. De La Rosa, and J.Z. Zhang, J. Phys. Chem. C 112, 1282 (2008).

    Article  Google Scholar 

  15. S.H. Choi, H.J. Song, I.K. Park, J.H. Yum, S.S. Kim, S.H. Lee, and Y.E. Sung, J. Photochem. Photobiol. A 179, 135 (2006).

    Article  Google Scholar 

  16. M. Klude, T. Passow, H. Heinke, and D. Hommel, Phys. Status Solidi b 229, 1029 (2002).

    Article  Google Scholar 

  17. C.Y. Huang, Y.K. Su, T.C. Wen, T.F. Guo, and M.L. Tu, IEEE Photonics Technol. Lett. 20, 282 (2008).

    Article  Google Scholar 

  18. J. Zhao, J.A. Bardecker, A.M. Munro, M.S. Liu, Y. Niu, I.K. Ding, J. Luo, B. Chen, A.K.Y. Jen, and D.S. Ginger, Nano Lett. 6, 463 (2006).

    Article  Google Scholar 

  19. M.J. Murcia, D.L. Shaw, E.C. Long, and C.A. Naumann, Opt. Commun. 281, 1771 (2008).

    Article  Google Scholar 

  20. S. Wang, B.R. Jarrett, S.M. Kauzlarich, and A.Y. Louie, J. Am. Chem. Soc. 129, 3848 (2007).

    Article  Google Scholar 

  21. A. Hoshino, N. Manabe, K. Fujioka, K. Suzuki, M. Yasuhara, and K. Yamamoto, J. Artif. Organs 10, 149 (2007).

    Article  Google Scholar 

  22. N.G. Portney and M. Ozkan, Anal. Bioanal. Chem. 384, 620 (2006).

    Article  Google Scholar 

  23. P. Grodzinski, M. Silver, and L.K. Molnar, Expert Rev. Mol. Diagn. 6, 307 (2006).

    Article  Google Scholar 

  24. A.P. Alivisatos, W.W. Gu, and C. Larabell, Annu. Rev. Biomed. Eng. 7, 55 (2005).

    Article  Google Scholar 

  25. J.G. Liang, S. Huang, D.Y. Zeng, Z.K. He, X.H. Ji, X.P. Ai, and H.X. Yang, Talanta 69, 126 (2006).

    Article  Google Scholar 

  26. G.W. Walker, V.C. Sundar, C.M. Rudzinski, A.W. Wun, M.G. Bawendi, and D.G. Nocera, Appl. Phys. Lett. 83, 3555 (2003).

    Article  Google Scholar 

  27. A.G. Pattantyus-Abraham, H. Qiao, J. Shan, K.A. Abel, T.-S. Wang, F.C.J.M. van Veggel, and J.F. Young, Nano Lett. 9, 2849 (2009).

    Article  Google Scholar 

  28. H. Jiang and J. Singh, Phys. Rev. B 56, 4696 (1997).

    Article  Google Scholar 

  29. C. Pryor, Phys. Rev. B 57, 7190 (1998).

    Article  Google Scholar 

  30. P.C. Sercel and K.J. Vahala, Phys. Rev. B 42, 3690 (1990).

    Article  Google Scholar 

  31. M. Tkach, V. Holovatsky, O. Voitsekhivska, M. Mykhalyova, and R. Fartushynsky, Phys. Status Solidi (b) 225, 331 (2001).

    Article  Google Scholar 

  32. X. Feng, G. Xiong, X. Zhang, and H. Gao, Phys. B 383, 207 (2006).

    Article  Google Scholar 

  33. A.M. Alcalde and G.E. Marques, Phys. Rev. B 65, 113301 (2002).

    Article  Google Scholar 

  34. I. Magnusdottir, S. Bischoff, A.V. Uskov, and J. Mørk, Phys. Rev. B 67, 205326 (2003).

    Article  Google Scholar 

  35. K.A. Vardanyan, A.L. Vartanian, V.N. Mughnetsyan, A.V. Dvurechenskii, and A.A. Kirakosyan, Physica E 66, 268 (2015).

    Article  Google Scholar 

  36. J. Feldmann, S.T. Cundiff, M. Arzberger, G. Böhm, and G. Abstreiter, J. Appl. Phys. 89, 1180 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Committee of Science MES RA (Project Nos. 13-1C196, 13IE-038, 13RF-093, 13YR-1C0044) and the research grant (condmatth-3821) from the Armenian National Science and Education Fund (ANSEF) based in New York, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.L. Vartanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vardanyan, K., Vartanian, A. & Kirakosyan, A. Effect of Phonon Confinement on Optical Phonon-Mediated Carrier Capture into CdSe/ZnS Quantum Dots. J. Electron. Mater. 44, 2779–2785 (2015). https://doi.org/10.1007/s11664-015-3744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3744-2

Keywords

Navigation