Skip to main content

Advertisement

Log in

Residential Solar Combined Heat and Power Generation using Solar Thermoelectric Generation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recent reports on improved efficiencies of solar thermoelectric generation (STEG) systems have generated interest in STEGs as a competitive power generation system. In this paper, the design of a combined cooling and power utilizing concentrated solar power is discussed. Solar radiation is concentrated into a receiver connected to thermoelectric modules, which are used as a topping cycle to generate power and high grade heat necessary to run an absorption chiller. Modeling of the overall system is discussed with experimental data to validate modeling results. A numerical modeling approach is presented which considers temperature variation of the source and sink temperatures and is used to maximize combined efficiency. A system is built with a demonstrated combined efficiency of 32% in actual working conditions with power generation of 3.1 W. Modeling results fell within 3% of the experimental results verifying the approach. An optimization study is performed on the mirror concentration ration and number of modules for thermal load matching and is shown to improve power generation to 26.8 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. N. Laboratory, “Estimated U.S. Energy Use in 2012” (2012).

  2. D. Kraemer, B. Poudel, H.-P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, Nat. Mater. 10, 532 (2011).

    Article  Google Scholar 

  3. G. Chen, J. Appl. Phys. 109, 054301 (2011).

    Article  Google Scholar 

  4. T. Yang, J. Xiao, P. Li, P. Zhai, and Q. Zhang, J. Electron. Mater. 40, 967 (2011).

    Article  Google Scholar 

  5. L.A. Weinstein, K. McEnaney, and G. Chen, J. Appl. Phys. 113, 104302 (2013).

    Article  Google Scholar 

  6. L.L. Baranowski, G.J. Snyder, and E.S. Toberer, Energy Environ. Sci. 5, 9055 (2012).

    Article  Google Scholar 

  7. C. Suter, P. Tomes, A. Weidenkaff, and A. Steinfeld, Sol. Energy 85, 1511 (2011).

    Article  Google Scholar 

  8. M. Telkes, J. Appl. Phys. 25, 765 (1954).

    Article  Google Scholar 

  9. K. McEnaney, D. Kraemer, Z. Ren, and G. Chen, J. Appl. Phys. 110, 13261 (2011).

    Article  Google Scholar 

  10. K. Yazawa, Y.R. Koh, and A. Shakouri, Appl. Energy 109, 1 (2013).

    Article  Google Scholar 

  11. R. Amatya and R.J. Ram, J. Electron. Mater. 39, 1735 (2010).

    Article  Google Scholar 

  12. L.L. Baranowski, G. Jeffrey Snyder, and E.S. Toberer, J. Appl. Phys. 113, 204904 (2013).

    Article  Google Scholar 

  13. P. Aranguren, D. Astrain, and M.G. Pérez, Energy 74, 346 (2014).

    Article  Google Scholar 

  14. S.W. Angrist, Direct Energy Conversion (Boston: Allyn and Bacon, 1965).

    Google Scholar 

  15. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press Inc, 1995).

    Book  Google Scholar 

  16. M. Gomez, B. Ohara, R. Reid, and H. Lee, J. Electron. Mater. p. 1 (2013).

  17. P.M. Mayer and R.J. Ram, Nanoscale Microscale Thermophys. Eng. 10, 143 (2006).

    Article  Google Scholar 

  18. R. McCarty, J. Electron. Mater. 42, 1504 (2013).

    Article  Google Scholar 

  19. K. Yazawa and A. Shakouri, J. Appl. Phys. 111, 073113 (2012).

    Article  Google Scholar 

  20. L. Barker, M. Neber, and H. Lee, Sol. Energy 97, 569 (2013).

    Article  Google Scholar 

  21. M. Neber and H. Lee, Energy 47, 481 (2012).

    Article  Google Scholar 

  22. D. Astrain, J.G. Vián, A. Martínez, and A. Rodríguez, Energy 35, 602 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohara, B., Wagner, M., Kunkle, C. et al. Residential Solar Combined Heat and Power Generation using Solar Thermoelectric Generation. J. Electron. Mater. 44, 2132–2141 (2015). https://doi.org/10.1007/s11664-015-3702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3702-z

Keywords

Navigation