Skip to main content
Log in

Effects of MgO and Mg(OH)2 on Phase Formation and Properties of MgTiO3 Microwave Dielectric Ceramics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study investigates the effects of MgO and Mg(OH)2 on the phase formation and properties of MgTiO3 ceramics prepared via a reaction-sintering process. A mixture of raw materials was sintered into MgTiO3 ceramics by bypassing calcination and subsequent pulverization stages. The second phase MgTi2O5 forms in pellets with added MgO (MT) and disappears in pellets with added Mg(OH)2 (MHT). Abnormal grain growth is observed in MHT due to different reactions during the heating process. Microwave dielectric properties ε r = 18.5–19.2, Q × f = 53,300–76,300 GHz and τ f = −58.7 to −53.2 ppm/°C are measured for MT. ε r = 15.3–15.9, Q × f = 118,800–144,400 GHz and τ f = −52.8 to −49.8 ppm/°C are measured for MHT. The lower ε r for MHT is caused by a lower density. Q × f increases and τ f shifts to less negative values when Mg(OH)2 is used instead of MgO. The reaction-sintering process is then a simple and effective method to produce MgTiO3 ceramics for applications in microwave dielectric resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wakino, Ferroelectrics 91, 69 (1989).

    Article  Google Scholar 

  2. C.L. Huang and M.H. Weng, Mater. Res. Bull. 36, 2741 (2001).

    Article  Google Scholar 

  3. C.L. Huang, C.L. Pan, and S.J. Shium, Mater. Chem. Phys. 78, 111 (2003).

    Article  Google Scholar 

  4. W.W. Cho, K. Kakimoto, and H. Ohsato, Jap. J. Appl. Phys. 43, 6221 (2004).

    Article  Google Scholar 

  5. H. Shin, H.K. Shin, H.S. Jung, S.Y. Cho, and K.S. Hong, Mater. Res. Bull. 40, 2021 (2005).

    Article  Google Scholar 

  6. I.R. Abothu, A.V. Prasada Rao, and S. Komarneni, Mater. Lett. 38, 186 (1999).

    Article  Google Scholar 

  7. M.P. Baura-Peña, M.J. Martínez-Lope, and M.E. García-Clavel, J. Mater. Sci. 26, 4341 (1991).

    Article  Google Scholar 

  8. G. Pfaff, Ceram. Int. 20, 111 (1994).

    Article  Google Scholar 

  9. J. Liao and M. Senna, Mater. Res. Bull. 30, 385 (1995).

    Article  Google Scholar 

  10. J.G. Baek, T. Isobe, and M. Senna, Solid State Ionics 90, 269 (1996).

    Article  Google Scholar 

  11. Y.C. Liou and K.H. Tseng, Mater. Res. Bull. 38, 1351 (2003).

    Article  Google Scholar 

  12. Y.C. Liou, Mater. Sci. Eng. B 103, 281 (2003).

    Article  Google Scholar 

  13. Y.C. Liou, C.Y. Shih, and C.H. Yu, Mater. Lett. 57, 1977 (2003).

    Article  Google Scholar 

  14. Y.C. Liou, C.T. Wu, K.H. Tseng, and T.C. Chung, Mater. Res. Bull. 40, 1483 (2005).

    Article  Google Scholar 

  15. Y.C. Liou, W.H. Shiu, and C.Y. Shih, Mater. Sci. Eng. B 131, 142 (2006).

    Article  Google Scholar 

  16. Y.C. Liou, M.H. Weng, and C.Y. Shiue, Mater. Sci. Eng. B 133, 14 (2006).

    Article  Google Scholar 

  17. Y.C. Liou and S.L. Yang, Mater. Sci. Eng. B 142, 116 (2007).

    Article  Google Scholar 

  18. Y.C. Liou, S.L. Yang, and S.Y. Chu, J. Alloys Compd. 576, 161 (2013).

    Article  Google Scholar 

  19. B.W. Hakki and P.D. Coleman, IEEE Trans. Microw Theory Tech. 8, 402 (1960).

    Article  Google Scholar 

  20. C.L. Huang and C.L. Pan, Jpn. J. Appl. Phys. 41, 707 (2002).

    Article  Google Scholar 

  21. X. Kuang, X. Jing, and Z. Tang, J. Am. Ceram. Soc. 89, 241 (2006).

    Article  Google Scholar 

  22. C.L. Huang, S.S. Liu, and S.H. Chen, J. Alloys Compd. 509, 9702 (2011).

    Article  Google Scholar 

  23. L. Li, X. Ding, and Q. Liao, Ceram. Int. 38, 1937 (2012).

    Article  Google Scholar 

  24. P.R. Rios, T. Yamamoto, T. Kondo, and T. Sakuma, Acta Mater. 46, 1617 (1998).

    Article  Google Scholar 

  25. I.J. Bae and S. Baik, J. Am. Ceram. Soc. 80, 1149 (1997).

    Article  Google Scholar 

  26. P.R. Rios, Acta Mater. 45, 1785 (1997).

    Article  Google Scholar 

  27. S. Wang, E.A. Holm, J. Suni, M.H. Alvi, P.N. Kalu, and A.D. Rollett, Acta Mater. 59, 3872 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the Ministry of Science and Technology of the Republic of China under contract NSC 95-2221-E-168-015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Cheng Liou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liou, YC., Yang, SL. & Chu, SY. Effects of MgO and Mg(OH)2 on Phase Formation and Properties of MgTiO3 Microwave Dielectric Ceramics. J. Electron. Mater. 44, 1062–1070 (2015). https://doi.org/10.1007/s11664-015-3628-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3628-5

Keywords

Navigation