Skip to main content
Log in

Hygro-thermo-mechanical Behavior of Adhesive-Based Flexible Chip-on-Flex Packaging

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Although adhesive-based chip-on-flex (COF) packaging technologies have many advantageous features, such as flexibility and compatibility with standard semiconductor and microelectronics packaging processes, the low hygro-thermal resistance leads to reliability concerns. Thus, finite element (FE) modeling and experimental testing have been used to investigate the effects of temperature and humidity conditions on the hygro-thermo-mechanical behavior of a thin flexible anisotropic conductive adhesive (ACA)-based COF packaging technology. The investigation starts from process modeling of the thermo-mechanical behavior of the technology during the ACA bonding process. The validity of the process modeling is demonstrated by temperature and warpage experiments. Furthermore, three-dimensional (3-D) transient moisture diffusion FE analysis through a thermal–moisture analogy based on the “wetness” technique is performed to evaluate the moisture distribution, in which the moisture properties of the polyimide (PI) substrate are obtained through a moisture absorption experiment. Then, the effect of the moisture properties of the ACA adhesive and PI substrate on the moisture diffusion behavior is examined. Finally, following process modeling, 3-D hygro-thermo-mechanical FE analysis under a constant temperature and humidity condition is undertaken to assess the influence of hygro-thermal aging and stress relaxation of the ACA adhesive on the long-term contact performance of the interconnects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Mao, M.A. Quevedo-Lopez, H.N. Alshareef, H. Stiegler, and B.E. Gnade, Org. Electron. 11, 925 (2010).

    Article  Google Scholar 

  2. Y.T. Hong, Z.Q. He, N.S. Lennhoff, D.A. Banach, and J. Kanicki, J. Electron. Mater. 33, 312 (2004).

    Article  Google Scholar 

  3. K. Chen, R. Zenner, M. Arneson, and D. Mountain, Ultra-thin electronic device package, in IEEE Electronic Components and Technology Conference, 1999, pp. 657–662.

  4. M.J. Yim, J.-S. Hwang, J.G. Kim, J.Y. Ahn, H.J. Kim, W. Kwon, and K.-W. Paik, J. Electron. Mater. 33, 76 (2004).

    Article  Google Scholar 

  5. H.-C. Cheng, C.-L. Ho, W.-C. Chen, and S.-S. Yang, IEEE Trans. Compon. Packag. Technol. 29, 577 (2006).

    Article  Google Scholar 

  6. E.H. Wong, R. Rajoo, S.W. Koh, and T.B. Lim, J. Electron. Packag. 124, 122 (2002).

    Article  Google Scholar 

  7. M.-Y. Tsai, C.-Y. Huang, C.-Y. Chiang, W.-C. Chen, and S.-S. Yang, IEEE Trans. Compon. Packag. Technol. 30, 517 (2007).

    Article  Google Scholar 

  8. T. Ikeda, W.-K. Kim, and N. Miyazaki, IEEE Trans. Compon. Packag. Technol. 29, 551 (2006).

    Article  Google Scholar 

  9. J.-Y. Yoon, I. Kim, and S.-B. Lee, J. Electron. Packag. 131, 021012-1 (2009).

    Article  Google Scholar 

  10. W.H. Zhu, S.L. Gan, and C.L. Toh, Mechanical Properties of Molding Compounds (MCs) under Different Moisture Conditions and in a Wide Temperature Range, in 5th International Conference on Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-Systems, 2004, pp. 593−598

  11. D.C.C. Lam and J. Wang, J. Electron. Mater. 36, 226 (2007).

    Article  Google Scholar 

  12. I.L. Chen, Correlation Between the Viscoelastic Properties of Anisotropic Conductive Adhesive and Reliability of Chip-on-Flex, Master Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, 2009. (in Chinese)

  13. L.K. Teh, M. Teo, E. Anto, C.C. Wong, S.G. Mhaisalkar, P.S. Teo, and E.H. Wang, IEEE Trans. Compon. Packag. Technol. 28, 506 (2005).

    Article  Google Scholar 

  14. C.W. Tan, Y.W. Chiu, and Y.C. Chan, Mater. Sci. Eng. B 98, 255 (2003).

    Article  Google Scholar 

  15. K.N. Chiang, C.W. Chang, and J.D. Lin, J. Electron. Packag. 123, 331 (2001).

    Article  Google Scholar 

  16. H.-C. Cheng, C.-H. Ma, C.-F. Yu, S.-T. Lu, and W.-H. Chen, Comput. Mater. Contin. 38, 129 (2013).

    Google Scholar 

  17. S. Yoon, B. Han, and Z. Wang, J. Electron. Packag. 129, 421 (2007).

    Article  Google Scholar 

  18. M.-Y. Tsai, C.Y. Wu, C.Y. Huang, and S.S. Yang, IEEE Trans. Adv. Packag. 31, 454 (2008).

    Article  Google Scholar 

  19. K.M. Chen, C.Y. Wu, C.H. Wang, H.-C. Cheng, and N.C. Huang, J. Electron. Mater. 43, 4229 (2014).

    Article  Google Scholar 

  20. C.H. Shen and G.S. Springer, J. Compos. Mater. 10, 2 (1976).

    Article  Google Scholar 

  21. A.C. Loos and G.S. Springer, J. Compos. Mater. 13, 131 (1979).

    Article  Google Scholar 

  22. E.H. Wong and R. Rajoo, Microelectron. Reliab. 43, 2087 (2003).

    Article  Google Scholar 

  23. JIS K 7209, Testing Methods for Water and Boiling Water Absorption of Plastics. Japanese Standards Association, 1984.

  24. SEMI G66-96, Test Method for the Measurement of Water absorption Characteristics for Semiconductor Molding Compounds. Semiconductor Equipment and Materials International, 1996.

  25. M.L. Williams, R.F. Landel, and J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).

    Article  Google Scholar 

  26. D.M. Espino, D.E.T. Shepherd, and D.W.L. Hukins, J. Mech. 29, N9 (2013).

    Article  Google Scholar 

  27. C.Y. Cao, Q.-H. Qin, and A.B. Yu, J. Mech. 29, 661 (2013).

    Article  Google Scholar 

  28. G.N. Ellison, Thermal Computations for Electronic Equipment (Malabar, FL: R.E. Krieger, 1989), p. 25.

    Google Scholar 

  29. H.-C. Cheng, W.-R. Ciou, W.-H. Chen, J.-L. Kuo, H.-C. Lu, and R.-B. Wu, Appl. Therm. Eng. 53, 78 (2013).

    Article  Google Scholar 

  30. W.S. Kwon and K.W. Paik, J. Appl. Polym. Sci. 93, 2634 (2004).

    Article  Google Scholar 

  31. M. Teo, S.G. Mhaisalkar, E.H. Wong, P.S. Teo, C.C. Wong, K. Ong, C.F. Goh, and L.K. Teh, IEEE Trans. Compon. Packag. Technol. 28, 157 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially supported by the Ministry of Science and Technology, Taiwan, ROC, under Grants MOST 103-2221-E-035-024-MY3 and NSC 101-2221-E-007-009-MY3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hsien-Chie Cheng or Wen-Hwa Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, HC., Huang, HH., Chen, WH. et al. Hygro-thermo-mechanical Behavior of Adhesive-Based Flexible Chip-on-Flex Packaging. J. Electron. Mater. 44, 1220–1237 (2015). https://doi.org/10.1007/s11664-015-3627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3627-6

Keywords

Navigation