Skip to main content
Log in

Nanostructured CoSi Obtained by Spark Plasma Sintering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cobalt monosilicide is a cheap, environmentally friendly thermoelectric material for medium temperatures (200–700°C). While its power factor is similar to the state-of-the-art thermoelectric materials, its thermal conductivity is too large to reach high ZT values. Nanostructuring might be an interesting strategy to reduce the phonon mean free path thereby improving the thermoelectric performance. In this paper, we report on a 35% reduction of the thermal conductivity of n-type CoSi by a nanostructuring approach. CoSi nanostructured powders were synthesized by arc melting, followed by 4 h mechanical milling. By optimizing the spark plasma sintering thermal and pressure cycle, pellets with 5–10% porosity were obtained. During sintering, a small amount of Co2Si extra phase appeared and grains coarsened. After sintering, the pellets remained nanostructured, with an averaged grain size of 70 nm. The reduction of thermal conductivity is ascribed to a decrease in both the electronic and lattice contributions. The former is directly related to a decrease in the electrical conductivity, which appears to be the limiting factor preventing nanostructured CoSi from reaching enhanced thermoelectric performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Patyk, J. Electron. Mater. 39, 2023 (2010).

    Article  Google Scholar 

  2. M.I. Fedorov and V.K. Zaitsev, Thermoelectrics Handbook. Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 2005), p. 31.1.

    Google Scholar 

  3. G.T. Alekseeva, V.K. Zaitsev, A.V. Petrov, V.I. Tarasov, and M.I. Fedorov, Fiz. Tverd. Tela 23, 2888 (1981).

    Google Scholar 

  4. E.N. Nikitin, P.V. Tamarin, and V.I. Tarasov, Phys. Solid State 11, 2002 (1970).

    Google Scholar 

  5. N. Satyala and D. Vashaee, Appl. Phys. Lett. 100, 073107 (2012).

    Article  Google Scholar 

  6. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J.-P. Fleurial, Adv. Funct. Mater. 19, 2445 (2009).

    Article  Google Scholar 

  7. S. Karuppaiah, M. Beaudhuin, and R. Viennois, J. Solid State Chem. 199, 90 (2013).

    Article  Google Scholar 

  8. W.H. Luo, H. Li, Y.G. Yan, Z.B. Lin, X.F. Tang, Q.J. Zhang, and C. Uher, Intermetallics 19, 404 (2011).

    Article  Google Scholar 

  9. M. Longhin, R. Viennois, D. Ravot, J.-J. Robin, and P. Papet, Solid State Sci. 38, 129 (2014).

    Article  Google Scholar 

  10. R. Orru, R. Licheri, A.M. Locci, A. Cincotti, and G.C. Cao, Mater. Sci. Eng. R-Rep. 63, 127 (2009).

    Article  Google Scholar 

  11. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).

    Article  Google Scholar 

  12. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

  13. C. Merlet, Mikrochim. Acta 114, 363 (1994).

    Article  Google Scholar 

  14. C.S. Lue, Y.K. Kuo, C.L. Huang, and W.J. Lai, Phys. Rev. B 69, 125111 (2004).

    Article  Google Scholar 

  15. J.C.Y. Koh and A. Fortini, Int. J. Heat Mass Transf. 16, 2013 (1973).

    Article  Google Scholar 

  16. C.D. Lien, M. Finetti, M.A. Nicolet, and S.S. Lau, J. Electron. Mater. 13, 95 (1984).

    Article  Google Scholar 

  17. H. Sun, D.T. Morelli, M.J. Kirkham, H.M. Meyer III, and E. Lara-Curzio, J. Appl. Phys. 110, 123711 (2011).

    Article  Google Scholar 

  18. E. Alleno (ICMPE, Paris11) et’al., Rev. Sci. Instrum. 2014, vol. Under review.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Longhin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longhin, M., Viennois, R., Ravot, D. et al. Nanostructured CoSi Obtained by Spark Plasma Sintering. J. Electron. Mater. 44, 1963–1966 (2015). https://doi.org/10.1007/s11664-014-3611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3611-6

Keywords

Navigation