Skip to main content
Log in

Aluminum-Catalyzed Growth of ‹110› Silicon Nanowires

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The growth of silicon nanowires in the ‹110› direction is reported using a vapor–liquid–solid mechanism with aluminum as the catalyst and SiH4 as the source gas in a low pressure chemical vapor deposition process. The effects of growth conditions on the yield of ‹110› versus ‹111› nanowires were investigated. Increasing reactor pressure beyond 300 Torr was found to improve ‹110› wire yield by suppressing vapor–solid thin film deposition on the nanowire sidewalls during growth that promoted nanowire kinking. Additionally, ‹110› growth was found to occur only at temperatures below the Al-Si eutectic temperature (577°C). At temperatures approximately equal to 577°C or higher, the preferential growth direction was observed to shift from ‹110› to ‹111›. The growth of ‹110› Si nanowires at sub-eutectic temperatures was attributed to a reduction in the silicon concentration in the catalyst droplet which promotes (110) surface nucleation and subsequent growth in the ‹110› direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Wang, T. Wang, P. Da, M. Xu, H. Wu, and G. Zheng, Adv. Mater. 25, 5177 (2013).

    Article  Google Scholar 

  2. T.J. Kempa, R.W. Day, S.-K. Kim, H.-G. Park, and C.M. Lieber, Energy Environ. Sci. 6, 719 (2013).

    Article  Google Scholar 

  3. R. Wagner and W. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  Google Scholar 

  4. S.A. Fortuna and X. Li, Semicond. Sci. Technol. 25, 024005 (2010).

    Article  Google Scholar 

  5. R. Jaccodine, J. Electrochem. Soc. 110, 524 (1963).

    Article  Google Scholar 

  6. A. Buin, A. Verma, A. Svizhenko, and M. Anantram, Nano Lett. 8, 760 (2008).

    Article  Google Scholar 

  7. Y. Wu, Y. Cui, L. Huynh, C. Barrelet, D.C. Bell, and C.M. Lieber, Nano Lett. 4, 433 (2004).

    Article  Google Scholar 

  8. V. Schmidt, S. Senz, and U. Gösele, Nano Lett. 5, 931 (2005).

    Article  Google Scholar 

  9. M.-K. Kwon, J.-Y. Kim, L. Vj, Y.-J. Teng, H.-L. Hsu, P.A. Baeza, I. Arslan, and M.S. Islam, Proc. SPIE 7768, 77680H (2010).

    Article  Google Scholar 

  10. S.M. Eichfeld, M.F. Hainey, H. Shen, C.E. Kendrick, E.A. Fucinato, J. Yim, M.R. Black, and J.M. Redwing, Proc. SPIE 8820, 88200I (2013).

    Article  Google Scholar 

  11. K.W. Schwarz and J. Tersoff, Nano Lett. 11, 316 (2011).

    Article  Google Scholar 

  12. A. Kramer, M. Albrecht, T. Boeck, T. Remmele, P. Schramm, and R. Fornari, Superlattices Microstruct. 46, 277 (2009).

    Article  Google Scholar 

  13. M. Kolíbal, T. Vystavěl, L. Novák, J. Mach, and T. Šikola, Appl. Phys. Lett. 99, 143113 (2011).

    Article  Google Scholar 

  14. S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981).

    Google Scholar 

  15. V. Schmidt, J.V. Wittemann, S. Senz, and U. Gösele, Adv. Mater. 21, 2681 (2009).

    Article  Google Scholar 

  16. J. Murray and A. McAlister, Bull. Alloy Phase Diagrams 5, 74 (1984).

    Article  Google Scholar 

  17. Y. Ke, X. Weng, J.M. Redwing, C.M. Eichfeld, T.R. Swisher, S.E. Mohney, and Y.M. Habib, Nano Lett. 9, 4494 (2009).

    Article  Google Scholar 

  18. D. Kohen, C. Cayron, E. De Vito, V. Tileli, P. Faucherand, C. Morin, A. Brioude, and S. Perraud, J. Cryst. Growth 341, 12 (2012).

    Article  Google Scholar 

  19. D. Kohen, V. Tileli, C. Cayron, P. Faucherand, C. Morin, J. Dufourcq, S. Noël, M. Levis, A. Brioude, and S. Perraud, Phys. Status Solidi 208, 2676 (2011).

    Article  Google Scholar 

  20. Y. Wang, V. Schmidt, S. Senz, and U. Gösele, Nat. Nanotechnol. 1, 186 (2006).

    Article  Google Scholar 

  21. B.A. Wacaser, M.C. Reuter, M.M. Khayyat, C.-Y. Wen, R. Haight, S. Guha, and F.M. Ross, Nano Lett. 9, 3296 (2009).

    Article  Google Scholar 

  22. O. Moutanabbir, S. Senz, R. Scholz, M. Alexe, Y. Kim, E. Pippel, Y. Wang, C. Wiethoff, T. Nabbefeld, F. Meyer zu Heringdorf, and M. Horn-von Hoegen, ACS Nano 5, 1313 (2011).

    Article  Google Scholar 

  23. O. Moutanabbir, D. Isheim, H. Blumtritt, S. Senz, E. Pippel, and D.N. Seidman, Nature 496, 78 (2013).

    Article  Google Scholar 

  24. M. Tao and L. Hunt, J. Electrochem. Soc. 144, 2221 (1997).

    Article  Google Scholar 

  25. C.M. Eichfeld, S.S.A. Gerstl, T. Prosa, Y. Ke, J.M. Redwing, and S.E. Mohney, Nanotechnology 23, 215205 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the U.S. Department of Energy under Grant Number DE-EE0005323 and the National Science Foundation under Grant Number PFI:AIR-TT 1414236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mel Hainey Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hainey, M., Eichfeld, S.M., Shen, H. et al. Aluminum-Catalyzed Growth of ‹110› Silicon Nanowires. J. Electron. Mater. 44, 1332–1337 (2015). https://doi.org/10.1007/s11664-014-3565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3565-8

Keywords

Navigation