Skip to main content
Log in

Benign Preparation of Metal–Organic Frameworks of Trimesic Acid and Cu, Co or Ni for Potential Sensor Applications

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) have been constructed using trimesic acid (TMA) as organic linker and Co(II), Ni(II) or Cu(II) metal ions from their corresponding aqueous chloride salts at room temperature. The prepared TMA–M (M: Co, Ni, and Cu) MOFs have been characterized in terms of their porosity and optical, thermal, electrical, and structural properties. The prepared MOFs were characterized in terms of their porosity through Brunauer–Emmett–Teller measurements, yielding a value of 330 m2/g for the TMA–Cu MOF. Structural analysis and thermal characterization of the prepared MOFs were done by using Fourier-transform infrared (FT-IR) spectroscopy, x-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA), respectively. The optical properties were analyzed by fluorescence spectroscopy. Additionally, TMA–M MOF disks were prepared and their conductivities determined by room-temperature IV measurements. The conductivity of the TMA–M MOFs was calculated to be between 7.97 × 10−7 S/cm and 5.39 × 10−9 S/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. S.T. Meek, J.A. Greathouse, and M.D. Allendorf, Adv. Mater. 23, 249 (2011).

    Article  Google Scholar 

  2. C. Valente, E. Choi, M.E. Belowich, C.J. Doonan, Q.W. Li, T.B. Gasa, Y.Y. Botros, O.M. Yaghi, and J.F. Stoddart, Chem. Commun. 46, 4911 (2010).

    Article  Google Scholar 

  3. O.M. Yaghi, C.E. Davis, G.M. Li, and H.L. Li, J. Am. Chem. Soc. 119, 2861 (1997).

    Article  Google Scholar 

  4. O.M. Yaghi, Chem. Innov. 30, 3 (2000).

    Google Scholar 

  5. O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, and J. Kim, Nature 423, 705 (2003).

    Article  Google Scholar 

  6. N.A. Khan, Z. Hasan, and S.H. Jhung, J. Hazard. Mater. 244, 444 (2013).

    Article  Google Scholar 

  7. K. Tomar, Inorg. Chem. Commun. 37, 132 (2013).

    Article  Google Scholar 

  8. J.F. Cai, J.C. Yu, H. Xu, Y.B. He, X. Duan, Y.J. Cui, C.D. Wu, B.L. Chen, and G.D. Qian, Cryst. Growth Des. 13, 2094 (2013).

    Article  Google Scholar 

  9. M. Lalonde, W. Bury, O. Karagiaridi, Z. Brown, J.T. Hupp, and O.K. Farha, J. Mater. Chem. A 1, 5453 (2013).

    Article  Google Scholar 

  10. Y.L. Miao, H. Sun, L. Wang, and Y.X. Sun, Acta Phys-Chim. Sin. 28, 547 (2012).

    Google Scholar 

  11. H. Reinsch and N. Stock, CrystEngComm 15, 544 (2013).

    Article  Google Scholar 

  12. M. Haouas, C. Volkringer, T. Loiseau, G. Ferey, and F. Taulelle, Chem. Mater. 24, 2462 (2012).

    Article  Google Scholar 

  13. E.C. Yang, Y.N. Chan, H. Liu, Z.C. Wang, and X.J. Zhao, Cryst. Growth Des. 9, 4933 (2009).

    Article  Google Scholar 

  14. F.A.A. Paz and J. Klinowski, Pure Appl. Chem. 79, 1097 (2007).

    Article  Google Scholar 

  15. J. Wu, F.M. Wang, J.Q. Liu, K.B. Li, and D.H. Xu, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 43, 1231 (2013).

    Article  Google Scholar 

  16. X.T. Wang, L.K. San, H. Nguyen, N.M. Shafer, M.T. Hernandez, and Z.X. Chen, J. Coord. Chem. 66, 826 (2013).

    Article  Google Scholar 

  17. F.L. Meng, Z.G. Fang, Z.X. Li, W.W. Xu, M.J. Wang, Y.P. Liu, J. Zhang, W.R. Wang, D.Y. Zhao, and X.H. Guo, J. Mater. Chem. A 1, 7235 (2013).

    Article  Google Scholar 

  18. Y.Y. Pan, D.Y. Ma, H.M. Liu, H. Wu, D.H. He, and Y.W. Li, J. Mater. Chem. 22, 10834 (2012).

    Article  Google Scholar 

  19. S.J. Garibay, Z.Q. Wang, and S.M. Cohen, Inorg. Chem. 49, 8086 (2010).

    Article  Google Scholar 

  20. U. Ravon, M. Savonnet, S. Aguado, M.E. Domine, E. Janneau, and D. Farrusseng, Micropor. Mesopor. Mater. 129, 319 (2010).

    Article  Google Scholar 

  21. S.J. Garibay, Z.Q. Wang, K.K. Tanabe, and S.M. Cohen, Inorg. Chem. 48, 7341 (2009).

    Article  Google Scholar 

  22. M.J. Dong, M. Zhao, S. Ou, C. Zou, and C.D. Wu, Angew. Chem. Int. Ed. 53, 1575 (2014).

    Article  Google Scholar 

  23. R. Saha, B. Joarder, A.S. Roy, S.M. Islam, and S. Kumar, Chem. Eur. J. 19, 16607 (2013).

    Article  Google Scholar 

  24. J.H. Lee, S. Kang, J.Y. Lee, J. Jaworski, and J.H. Jung, Chem. Eur. J. 19, 16665 (2013).

    Article  Google Scholar 

  25. N. Sahiner, K. Sel, O.F. Ozturk, S. Demirci, and G. Terzi, Appl. Surf. Sci. 314, 663 (2014).

    Article  Google Scholar 

  26. T. Classen, M. Lingenfelder, Y. Wang, R. Chopra, C. Virojanadara, U. Starke, G. Costantini, G. Fratesi, S. Fabris, S. de Gironcoli, S. Baroni, S. Haq, R. Raval, and K. Kern, J. Phys. Chem. A 111, 12589–12603 (2007).

    Article  Google Scholar 

  27. X.L. Wang, J. Li, H.Y. Lin, H.L. Hu, B.K. Chen, and B. Mu, Solid State Sci. 11, 2118–2124 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by King Saud University, Deanship of Scientific Research, Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurettin Sahiner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sel, K., Demirci, S., Meydan, E. et al. Benign Preparation of Metal–Organic Frameworks of Trimesic Acid and Cu, Co or Ni for Potential Sensor Applications. J. Electron. Mater. 44, 136–143 (2015). https://doi.org/10.1007/s11664-014-3444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3444-3

Keywords

Navigation