Skip to main content
Log in

A Study of Pb-Rich Dendrites in a Near-Eutectic 63Sn-37Pb Solder Microstructure via Laboratory-Scale Micro X-ray Computed Tomography (μXCT)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A key challenge in the application of laboratory-scale x-ray computed tomography to the study of metallic alloys is achieving sufficient feature contrast and resolution for the segmentation between solid phases of similar composition and density at spatial length scales suitable for microstructure quantification. In the microelectronic packaging, value exists in the nondestructive evaluation of solder system microstructures resulting from varying compositional and processing factors. A near-eutectic 63Sn-37Pb butt-joint on copper was studied with a custom laboratory-scale microresolved x-ray computed tomography scanner with the goal of quantifying three-dimensional (3D) microstructural constituents resulting from a reproducible reflow process. The 3D character of lead-rich dendrites resulting from non-equilibrium solidification was revealed. The quantification of the dendrite microstructure was made possible through a combination of data acquisition, data processing, and data segmentation techniques. The scanning parameter selection, with respect to the characterization task, is discussed. Data acquisition and processing methods which were determined to be beneficial for 3D microstructure characterization are detailed. A beam-hardening artifact reduction algorithm is provided, without which microstructure quantification would not have been possible. The segmentation of the dendrite features, performed using a semi-automatic 3D region growth method, is described. The segmented solder volume enabled quantitative description of the 3D dendrite microstructure and void content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Teramoto, T. Murakoshi, M. Tsuzaka, and H. Fujita, IEEE Trans. Electron. Packag. Manuf. 30, 285 (2007).

    Article  Google Scholar 

  2. M.A. Dudek, L. Hunter, S. Kranz, J.J. Williams, S.H. Lau, and N. Chawla, Mater. Charact. 61, 433 (2010).

    Article  Google Scholar 

  3. L. Jiang, N. Chawla, M. Pacheco, and V. Noveski, Mater. Charact. 62, 970 (2011).

    Article  Google Scholar 

  4. Y. Li, J.S. Moore, B. Pathangey, R.C. Dias, and D. Goyal, IEEE Trans. Device Mater. Reliab. 12, 494 (2012).

    Article  Google Scholar 

  5. T. Tian, K. Chen, A.A. MacDowell, D. Parkinson, Y. Lai, and K.N. Tu, Scr. Mater. 65, 646 (2011).

    Article  Google Scholar 

  6. E. Padilla, V. Jakkali, L. Jiang, and N. Chawla, Acta Mater. 60, 4017 (2012).

    Article  Google Scholar 

  7. H.X. Xie, D. Friedman, K. Mirpuri, and N. Chawla, J. Electron. Mater. 43, 33 (2014).

    Article  Google Scholar 

  8. H. Tsuritani, T. Sayama, K. Uesugi, T. Takayanagi, and T. Mori, J. Electron. Packag. 129, 434 (2007).

    Article  Google Scholar 

  9. K.E. Yazzie, J.J. Williams, N.C. Phillips, F. De Carlo, and N. Chawla, Mater. Charact. 70, 33 (2012).

    Article  Google Scholar 

  10. M. Maleki, J. Cugnoni, and J. Botsis, J. Electron. Mater. 43, 1026 (2014).

    Article  Google Scholar 

  11. J. Bertheau, P. Bleuet, F. Hodaj, P. Cloetens, N. Martin, J. Charbonnier, and N. Hotellier, Microelectron. Eng. 113, 123 (2014).

    Article  Google Scholar 

  12. H. Tsuritani, Y. Okamoto, K. Uesugi, T. Mori, T. Takayanagi, and T. Sayama, J. Electron. Packag. 133, 021007 (2011).

    Article  Google Scholar 

  13. R.H. Mathiesen and L. Arnberg, Acta Mater. 53, 947 (2005).

    Article  Google Scholar 

  14. S. Terzi, L. Salvo, M. Suery, A.K. Dahle, and E. Boller, Acta Mater. 58, 20 (2010).

    Article  Google Scholar 

  15. M.Y. Wang, J.J. Williams, L. Jiang, F. De Carlo, T. Jing, and N. Chawla, Scr. Mater. 65, 855 (2011).

    Article  Google Scholar 

  16. D. Tolnai, P. Townsend, G. Requena, L. Salvo, J. Lendvai, and H.P. Degischer, Acta Mater. 60, 2568 (2012).

    Article  Google Scholar 

  17. M.Y. Wang, Y.J. Xu, T. Jing, G.Y. Peng, Y.N. Fu, and N. Chawla, Scr. Mater. 67, 629 (2012).

    Article  Google Scholar 

  18. J. Friedli, J.L. Fife, P. Di Napoli, and M. Rappaz, Metall. Mater. Trans. A 44, 5522 (2013).

    Article  Google Scholar 

  19. M. Wang, Y. Xu, Q. Zheng, S. Wu, T. Jing, and N. Chawla, Metall. Mater. Trans. A 45, 2562 (2014).

    Article  Google Scholar 

  20. A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, and J. Baruchel, Acta Mater. 61, 1303 (2013).

    Article  Google Scholar 

  21. J. Zhu, T. Wang, F. Cao, W. Huang, H. Fu, and Z. Chen, Mater. Lett. 89, 137 (2012).

    Article  Google Scholar 

  22. D. Kammer and P.W. Voorhees, Acta Mater. 54, 1549 (2006).

    Article  Google Scholar 

  23. F. Sá, O.L. Rocha, C.A. Siqueira, and A. Garcia, Mater. Sci. Eng. A 373, 131 (2004).

    Article  Google Scholar 

  24. E. Netto de Souza, N. Cheung, and A. Garcia, J. Alloys Compd. 399, 110 (2005).

    Article  Google Scholar 

  25. L.R. Garcia, W.R. Osório, and A. Garcia, Mater. Des. 32, 3008 (2011).

    Article  Google Scholar 

  26. D.C. Lin, T.S. Srivatsan, G.X. Wang, and R. Kovacevic, Powder Technol. 166, 38 (2006).

    Article  Google Scholar 

  27. G.T. Herman, Phys. Med. Biol. 24, 81 (1979).

    Article  Google Scholar 

  28. R. Ferriera de Paiva, J. Lynch, E. Rosenberg, and M. Bisiaux, NDT&E Int. 31, 17 (1998).

    Article  Google Scholar 

  29. V.S.V.M. Vedula and P. Munshi, NDT&E Int. 41, 25 (2006).

    Article  Google Scholar 

  30. Y. Imura, T. Yanagida, H. Morii, H. Mimura, and T. Aoki, J. Nucl. Sci. Technol. 2, 169 (2012).

    Article  Google Scholar 

  31. M.G. Bisogni, A. Del Guerra, N. Lanconelli, A. Lauria, G. Mettivier, M.C. Montesi, D. Panetta, R. Pani, M.G.K. Ramakrishna, K. Muralidhar, and P. Munshi, NDT&E Int. 39, 449 (2006)

  32. S. Krimmel, J. Stephan, and J. Baumann, Nucl. Instrum. Methods A542, 399 (2005).

    Article  Google Scholar 

  33. F. Jian and L. Hongnian, Nucl. Instrum. Methods A556, 379 (2006).

    Article  Google Scholar 

  34. M. Krumm, S. Kasperl, and M. Franz, NDT&E Int. 41, 242 (2008).

    Article  Google Scholar 

  35. N. Menvielle, Y. Goussard, D. Orban, and G. Soulez, {IEEE} Proc. Eng. Med. Bio. 27 (2005).

  36. K. Remeysen and R. Swennen, Int. J. Coal Geol. 67, 101 (2006).

    Article  Google Scholar 

  37. D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase transformations in metals and alloys, 3rd ed. (Boca Raton, FL: CRC Press, 2009).

    Google Scholar 

  38. J.C.E. Mertens, J.J. Williams, and N.C. Chawla, Rev. Sci. Instrum. 85, 016103 (2014).

    Article  Google Scholar 

  39. J.C.E. Mertens, J.J. Williams, and N.C. Chawla, Mater. Charact. A92, 36 (2014).

    Article  Google Scholar 

  40. J.C.E. Mertens, J.J. Williams, and N.C. Chawla. {IEEE} Trans. Image Proc. (under Review).

Download references

Acknowledgements

We would like to gratefully acknowledge support and funding for this work from the Semiconductor Research Corporation (SRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhilesh Chawla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mertens, J., Williams, J. & Chawla, N. A Study of Pb-Rich Dendrites in a Near-Eutectic 63Sn-37Pb Solder Microstructure via Laboratory-Scale Micro X-ray Computed Tomography (μXCT). J. Electron. Mater. 43, 4442–4456 (2014). https://doi.org/10.1007/s11664-014-3382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3382-0

Keywords

Navigation