Skip to main content
Log in

Effects of Substrate Temperature on the Microstructure and Morphology of CdZnTe Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The effects of substrate temperature on the microstructure and morphology of CdZnTe thin films were investigated in detail. The CdZnTe thin films were deposited on glass substrates at 200°C, 300°C and 400°C by radio frequency magnetron sputtering and annealed at 450°C for an hour under N2 ambient at atmospheric pressure. The microstructure and morphology of the CdZnTe films were analyzed by using x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy and atomic force microscopy. The effects of substrate temperature on transmission spectra of the CdZnTe films were also investigated. The experimental results show that the optimum morphology and crystalline thin film structures were achieved at 400°C growth temperature. At higher substrate temperatures, atomic mobility and diffusion are promoted, which can stabilize the uniformity and crystallite size. The crystalline grains enlarge and the surface morphology becomes smoother due to growth of grains in the CdZnTe thin films. In addition, the transmission spectra of the films are consistent with the morphological changes. It may be concluded that substrate temperature in growing CdZnTe films has a substantial effect on morphological characteristics, and desired quality of the CdZnTe thin films may be fabricated at higher substrate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.O. Tumer, S. Yin, V. Cajipe, H. Flores, J. Mainprize, G. Mawdsley, J.A. Rowlands, M.J. Yaffe, E.E. Gordon, W.J. Hamilton, D. Rhiger, S.O. Kasap, P. Sellin, and K.S. Shah, Nucl. Instrum. Methods A 497, 21 (2003).

    Article  Google Scholar 

  2. E. Yilmaz, Energy Source A 34, 332 (2012).

    Article  Google Scholar 

  3. I. Nasieka, L. Rashkovetskyi, O. Strilchuk, and B. Danilchenko, Nucl. Instrum. Methods A 648, 290 (2011).

    Article  Google Scholar 

  4. R. Sudharsanan, G.D. Vakerlis, and N.H. Karam, J. Electron. Mater. 26, 745 (1997).

    Article  Google Scholar 

  5. P.J. Sellin, Nucl. Instrum. Methods A 563, 1 (2006).

    Article  Google Scholar 

  6. O. Zelaya-Angel, J.G. Mendoza-Alvarez, M. Becerril, H. Navarro-Contreras, and L. Tirado-Mejia, J. Appl. Phys. 95, 6284 (2004).

    Article  Google Scholar 

  7. G.Q. Zha, H. Zhou, J.N. Gao, T. Wang, and W.Q. Jie, Vacuum 86, 242 (2011).

    Article  Google Scholar 

  8. S. Stolyarova, F. Edelman, A. Chack, A. Berner, P. Werner, N. Zakharov, M. Vytrykhivsky, R. Beserman, R. Weil, and Y. Nemirovsky, J. Phys. D Appl. Phys. 41, 065402 (2008).

    Article  Google Scholar 

  9. B.L. Yao, J. Huang, L.M. Cai, K. Tang, B. Ren, J. Zhou, J. Le, L.Y. Shen, Y. Zhu, and L.J. Wang, Key Eng. Mater. 544, 226 (2013).

    Article  Google Scholar 

  10. J. Huang, L.J. Wang, K. Tang, R. Xu, J.J. Zhang, Y.B. Xia, and X.G. Lu, Phys. Procedia 32, 161 (2012).

    Article  Google Scholar 

  11. D.M. Zeng, W.Q. Jie, H. Zhou, Y.G. Yang, and F. Chen, Adv. Eng. Mater. 194–196, 2312 (2011).

    Google Scholar 

  12. E. Yilmaz, E. Tugay, A. Aktag, I. Yildiz, M. Parlak, and R. Turan, J. Alloys Compd. 545, 90 (2012).

    Article  Google Scholar 

  13. M. Sridharan, M. Mekaladevi, S.K. Narayandass, D. Mangalaraj, and H.C. Lee, Cryst. Res. Technol. 39, 328 (2004).

    Article  Google Scholar 

  14. R. Dhere, T. Gessert, J. Zhou, S. Asher, J. Pankow, and H. Moutinho, Mater. Res. Soc. Symp. Proc. 763, 409 (2003).

    Google Scholar 

  15. G.G. Rusu, M. Rusu, and M. Girtan, Vacuum 81, 1476 (2007).

    Article  Google Scholar 

  16. C.B. Wang, R. Tu, T. Goto, Q. Shen, and L.M. Zhang, Mater. Chem. Phys. 113, 130 (2009).

    Article  Google Scholar 

  17. J. Mass, P. Bhattacharya, and R.S. Katiyar, Mater. Sci. Eng. B Solid 103, 9 (2003).

    Article  Google Scholar 

  18. E. Cetinorgu, S. Goldsmith, and R.L. Boxman, J. Cryst. Growth 299, 259 (2007).

    Article  Google Scholar 

  19. W. Kern and D.A. Puotinen, RCA Rev. 31, 187 (1970).

    Google Scholar 

  20. K.A. Reinhardt and W. Kern, Handbook of Silicon Wafer Cleaning Technology, 2nd ed. (Norwich, NY: William Andrew, 2008).

    Google Scholar 

  21. S.K. Pandey, S.K. Pandey, C. Mukherjee, P. Mishra, M. Gupta, S.R. Barman, S.W. D’Souza, and S. Mukherjee, J.␣Mater. Sci. Mater. Electron. 24, 2541 (2013).

    Article  Google Scholar 

  22. Y.J. Li, G.L. Ma, X.N. Zhan, and W.Q. Jie, J. Electron. Mater. 31, 834 (2002).

    Article  Google Scholar 

  23. Z.Z. Bai and D.L. Wang, Phys. Status Solidi A 209, 1982 (2012).

    Article  Google Scholar 

  24. M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belenli, and M. Oz, J. Mater. Sci. Mater. Electron. 24, 467 (2013).

    Article  Google Scholar 

  25. B.D. Cullity, Element of X-ray Diffraction, 3rd ed. (Reading, MA: Addition-Wesley, 2001).

    Google Scholar 

  26. S.Y. Yang, B.Y. Man, M. Liu, C.S. Chen, X.G. Gao, C.C. Wang, and B. Hu, Appl. Surf. Sci. 257, 3856 (2011).

    Article  Google Scholar 

  27. S.K. Sharma and S. Mohan, Appl. Surf. Sci. 282, 492 (2013).

    Article  Google Scholar 

  28. S.S. Lekshmy, G.P. Daniel, and K. Joy, Appl. Surf. Sci. 274, 95 (2013).

    Article  Google Scholar 

  29. X.Q. Wei, J.Z. Huang, M.Y. Zhang, Y. Du, and B.Y. Man, Mater. Sci. Eng. B Adv. 166, 141 (2010).

    Article  Google Scholar 

  30. V. Jayasree, R. Ratheesh, P.P. Rao, P. Koshy, V. Ganesan, V.U. Nayar, and V.P.M. Pillai, Phys. Status Solidi A 206, 2801 (2009).

    Google Scholar 

  31. G.Q. Li, W.Q. Jie, Z. Gu, and H. Hua, Chin. Phys. Lett. 20, 1600 (2003).

    Article  Google Scholar 

  32. G.Q. Li, W.Q. Jie, T. Wang, and G. Yang, Nucl. Instrum. Methods A 534, 511 (2004).

    Article  Google Scholar 

  33. A.K. Garg, M. Srivastava, R.C. Narula, R.K. Bagai, and V. Kumar, J. Cryst. Growth 260, 148 (2004).

    Article  Google Scholar 

  34. R.G. Solanki, Indian J. Pure Appl. Phys. 48, 133 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Middle East Technical University and Abant Izzet Baysal University for providing experimental facilities and their generous support. This work is supported by Abant Izzet Baysal University under Contract Number: AIBU, BAP.2009.03.02.319, and the Ministry of Development of Turkey under Contract Number: 2012K120360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkas, H., Kaya, S. & Yilmaz, E. Effects of Substrate Temperature on the Microstructure and Morphology of CdZnTe Thin Films. J. Electron. Mater. 43, 4011–4017 (2014). https://doi.org/10.1007/s11664-014-3371-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3371-3

Keywords

Navigation