Skip to main content
Log in

Electromigration Induced Break-up Phenomena in Liquid Metal Printed Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Room temperature liquid metal (RTLM)-related electronics has recently been found increasingly important in a wide variety of emerging areas. In particular, printable liquid metal ink opens the way for direct writing of electronics spanning form microscale to even nanoscale. However, such fluid-like circuits also raised important fundamental as well as practical issues for solving. A big issue facing its future large-scale application is that the failure features of the conductive wires under electrical current densities are not clear. Here, we discovered for the first time that a liquid metal thin film would be broken by the so-called electromigration effect as the applied current increases to a critical magnitude. A theoretical model was established to preliminarily interpret the phenomena and the related effects. The break-up effect in the liquid metal-based circuits could be one of the major hurdles that must be tackled with caution in the research and application of future liquid metal technologies, especially for the printed microelectronics thus enabled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zheng, Z. He, Y. Gao, and J. Liu, Scientific Reports 3, 1786 (2013).

    Google Scholar 

  2. J. Park, S. Wang, M. Li, C. Ahn, J.K. Hyun, D.S. Kim, D.K. Kim, J.A. Rogers, Y. Huang, and S. Jeon, Nature Communications 3, 916 (2012).

    Article  Google Scholar 

  3. H. Li, Y. Yang, and J. Liu, Appl. Phys. Lett. 101, 073511 (2012).

    Article  Google Scholar 

  4. Q. Zhang, Y. Zheng, and J. Liu, Frontiers in Energy 6, 311 (2012).

    Article  Google Scholar 

  5. Y. Gao, H. Li, and J. Liu, PLoS ONE 7, e45485 (2012).

    Article  Google Scholar 

  6. H. Li and J. Liu, Frontiers in Energy 5, 20 (2011).

    Article  Google Scholar 

  7. D.R. Lide, CRC Handbook of Chemistry and Physics, 90th ed. (CRC Press, 2010).

  8. Y. Deng and J. Liu, ASME J. Electron. Packag. 132, 031009 (2010).

    Article  Google Scholar 

  9. J.R. Black, IEEE Trans. Electron Devices ED 16, 338 (1969).

    Article  Google Scholar 

  10. H.B. Huntington and A.R. Grone, J. Phys. Chem. Solids 20, 76 (1961).

    Article  Google Scholar 

  11. K.H. Bevan, W. Zhu, H. Guo, and Z. Zhang, Phys. Rev. Lett. 106, 156404 (2011).

    Article  Google Scholar 

  12. A. Latz, S. Sindermann, L. Brendel, G. Dumpich, F.-J. Meyer zu Heringdorf, and D.E. Wolf, Phys. Rev. B 85, 035449 (2012).

  13. E. Dalton, I. Clancy, D. Corcoran, A. Arshak, and G. Gooberman, Phys. Rev. Lett. 104, 214101 (2010).

    Article  Google Scholar 

  14. J.P. Dekker, C.A. Volkert, E. Arzt, and P. Gumbsch, Phys. Rev. Lett. 87, 035901 (2001).

    Article  Google Scholar 

  15. K.H. Bevan, H. Guo, E.D. Williams, and Z. Zhang, Phys. Rev. B 81, 235416 (2010).

    Article  Google Scholar 

  16. R.S. Sorbello, A. Lodder, and S.J. Hoving, Phys. Rev. B 25, 6178 (1982).

    Article  Google Scholar 

  17. R.S. Sorbello, Phys. Rev. B 31, 798 (1985).

    Article  Google Scholar 

  18. I.A. Blech, J. Appl. Phys. 47, 1203 (1976).

    Article  Google Scholar 

  19. J.R. Lloyd, J. Clemens, and R. Snede, Microelectron. Reliab. 39, 1595 (1999).

    Article  Google Scholar 

  20. C.K. Hu and J.M.E. Harper, Mater. Chem. Phys. 52, 5 (1998).

    Article  Google Scholar 

  21. S. Mei, Y. Gao, H. Li, Z. Deng, and J. Liu, Appl. Phys. Lett. 102, 041905 (2013).

    Article  Google Scholar 

  22. T. Liu, P. Sen, and C.-J. Kim, J. Microelectromech. Sys. 21, 443 (2012).

    Article  Google Scholar 

  23. M.J. Regan, H. Tostmann, P.S. Pershan, O.M. Magnussen, E. DiMasi, B.M. Ocko, and M. Deutsch, Phys. Rev. B 55, 10786 (1997).

    Article  Google Scholar 

  24. I. Dutta and P. Kumar, Appl. Phys. Lett. 94, 184104 (2009).

    Article  Google Scholar 

  25. W. Jones and H.N. Dunleavy, J. Phys. F: Metal Phys. 9, 1541 (1979).

    Article  Google Scholar 

  26. J.R. Lloyd, Semicond. Sci. Technol. 12, 1177 (1997).

    Article  Google Scholar 

  27. K.N. Tu, Phys. Rev. B 45, 1409 (1992).

    Article  Google Scholar 

  28. J.P. Dekker, A. Lodder, and J. van Ek, Phys. Rev. B 56, 12167 (1997).

    Article  Google Scholar 

  29. P.R. Rimbey and R.S. Sorbello, Phys. Rev. B 21, 2150 (1980).

    Article  Google Scholar 

  30. P.S. Ho and T Kwok, Rep. Prog. Phys. 52, 301 (1989).

  31. M.E. Sarychev, Y.V. Zhitnikov, L. Borucki, C.-L. Liu, and T.M. Makhviladze, J. Appl. Phys. 86, 3068 (1999).

    Article  Google Scholar 

  32. J. Jing, L. Liang, and G. Meng, ASME J. Electron. Packag. 132, 011002 (2010).

    Article  Google Scholar 

  33. M. Pathak, J. Pak, D.Z. Pan, and S.K. Lim, Proc. ICCAD (2011), pp. 555–562.

  34. W. Yang, Mechatronic Reliability (Tsinghua University Press, 2001).

  35. G.K. Batchelor, An Introduction to Fluid Dynamics (New York: Cambridge University Press, 2000).

    Book  Google Scholar 

  36. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, 2nd ed. (Vol. 6, Butterworth-Heinemann, 1987).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Guo, C., Zhou, Y. et al. Electromigration Induced Break-up Phenomena in Liquid Metal Printed Thin Films. J. Electron. Mater. 43, 4255–4261 (2014). https://doi.org/10.1007/s11664-014-3366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3366-0

Keywords

Navigation