Skip to main content
Log in

Design of Polarization- and Incident Angle-Independent Perfect Metamaterial Absorber with Interference Theory

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A perfect metamaterial absorber is realized and its properties are theoretically, numerically and experimentally investigated at microwave frequencies. In addition, polarization and incident angle independencies are also tested for the structure. Theoretical, numerical and experimental results show that the proposed model has many advantages compared to those in the literature, such as perfect absorption, polarization and incident angle independencies, very simple design, and operation over a sufficiently wide band. A simple configuration is chosen for the proposed model so that it can be easily tuned for other frequency regimes to realize new absorbers for applications such as sensors and stealth technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Engheta and R.W. Ziolkowski, Metamaterials-Physics and Engineering Explorations, 1st ed. (Piscataway, NJ: Wiley, 2006).

    Google Scholar 

  2. C. Sabah and S. Uckun, Prog. Electromagn. Res. 91, 349–364 (2009).

    Article  Google Scholar 

  3. J. Lee and S. Lim, Electron. Lett. 47, 8–9 (2011).

    Article  Google Scholar 

  4. J. Sun, L. Liu, G. Dong, and J. Zhou, Opt. Express 19, 21155–21162 (2011).

    Article  Google Scholar 

  5. B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, Opt. Express 18, 23196–23203 (2010).

    Article  Google Scholar 

  6. F. Bilotti, L. Nucciand, and L. Vegni, Microw. Opt. Technol. Lett. 48, 2171–2175 (2006).

    Article  Google Scholar 

  7. B. Wang, T. Koschny, and C.M. Soukoulis, Phys. Rev. B 80, 0331081–0331084 (2009).

    Google Scholar 

  8. Y.J. Huang, G.J. Wen, J. Li, W.R. Zhu, P. Wang, and Y.H. Sun, J. Electromagn. Wave Appl. 27, 552–559 (2013).

    Article  Google Scholar 

  9. K. Delihacioglu, IEEE Antenna Wirel. Propag. Lett. 11, 1370–1373 (2012).

    Article  Google Scholar 

  10. K. Delihacioglu, S. Uckun, and T. Ege, AEU-Int. J. Electron. C 61, 182–185 (2007).

    Article  Google Scholar 

  11. C. Sabah, F. Dincer, M. Karaaslan, E. Unal, and O. Akgol, Radio Sci. 49, 306-314 (2014).

  12. B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, Prog. Electromagn. Res. 101, 231–239 (2010).

    Article  Google Scholar 

  13. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).

    Article  Google Scholar 

  14. Y. Cheng and H. Yang, J. Appl. Phys. 108, 034906 (2010).

    Article  Google Scholar 

  15. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Rev. Lett. 100, 2074021–2074024 (2008).

    Article  Google Scholar 

  16. T. Wanghuang, W. Chen, Y. Huang, and G. Wen, AIP Adv. 3, 102118–102119 (2013).

    Article  Google Scholar 

  17. H.T. Chen, J.F. Zhou, J.F. OHara, F. Chen, A.K. Azad, and A.J. Taylor, Phys. Rev. Lett. 105, 073901–073904 (2010).

    Article  Google Scholar 

  18. H.T. Chen, Opt. Express 20, 7165–7172 (2012).

    Article  Google Scholar 

  19. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, and W.J. Padilla, Opt. Express 16, 7181–7188 (2008).

    Article  Google Scholar 

  20. J. Lee, Y.J. Yoon, and S. Lim, ETRI J. 34, 126–129 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by TUBITAK under the Project Nos. 113E290 and 1059B141300477, Both of the authors, M.K. and F.D., also acknowledges partial support from the Turkish Academy of Sciences. The authors would like to thank the editors and anonymous reviewers for their valuable suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furkan Dincer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dincer, F., Karaaslan, M., Unal, E. et al. Design of Polarization- and Incident Angle-Independent Perfect Metamaterial Absorber with Interference Theory. J. Electron. Mater. 43, 3949–3953 (2014). https://doi.org/10.1007/s11664-014-3316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3316-x

Keywords

Navigation