Skip to main content
Log in

Preparation, Infrared Emissivity, and Dielectric and Microwave Absorption Properties of Fe-Doped ZnO Powder

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fe-doped ZnO powders have been synthesized by the coprecipitation method using zinc nitrate [Zn(NO3)2·6H2O] as starting material, urea [CO(NH2)2] as precipitator, and ferric nitrate [Fe(NO3)3·9H2O] as doping source. The microstructure of the prepared powders has been characterized by x-ray diffraction and scanning electron microscopy. Results show that, when the molar ratio of Fe to (Zn + Fe) was less than 0.09, the prepared powder was ZnO(Fe) solid solution, and the ZnFe2O4 impurity phase appeared when the Fe doping content was further increased. The electric permittivity in the frequency range of 8.2 GHz to 12.4 GHz and the average infrared emissivity in the wavelength range of 8 μm to 14 μm have been determined for the prepared powders. The average infrared emissivity decreased with increasing Fe doping content. The real (ε′) and imaginary part (ε″) of the permittivity of the prepared powders showed opposite trends. When the molar ratio of Fe to (Zn + Fe) was 0.03, the prepared Fe-doped ZnO powder demonstrated the best microwave absorption in the frequency range of 8.2 GHz to 12.4 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.-H. Ting, K.-H. Wu, J.-S. Hsu, M.-H. Chuang, and C.-C. Yang, J. Chin. Chem. Soc. 55, 724 (2008).

    Google Scholar 

  2. Z.L. Wang, MRS Bull. 37, 814 (2012).

    Article  Google Scholar 

  3. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  Google Scholar 

  4. Z.L. Wang, Mater. Sci. Eng. R 64, 33 (2009).

    Article  Google Scholar 

  5. Y.-J. Chen, F. Zhang, G.-G. Zhao, X.-Y. Fang, H.-B. Jin, P. Gao, C.-L. Zhu, M.-S. Cao, and G. Xiao, J. Phys. Chem. C 114, 9239 (2010).

    Article  Google Scholar 

  6. R.F. Zhuo, H.T. Feng, J.T. Chen, D. Yan, J.J. Feng, H.J. Li, B.S. Geng, S. Cheng, X.Y. Xu, and P.X. Yan, J. Phys. Chem. C 112, 11767 (2008).

    Article  Google Scholar 

  7. Y.J. Chen, M.S. Cao, T.H. Wang, and Q. Wan, Appl. Phys. Lett. 84, 3367 (2004).

    Article  Google Scholar 

  8. L. Kong, X.W. Yin, L.T. Zhang, and L.F. Cheng, J. Am. Ceram. Soc. 95, 3158 (2012).

    Article  Google Scholar 

  9. T. Xin and K.-A. Hu, Mater. Sci. Eng. B 139, 119 (2007).

    Article  Google Scholar 

  10. Y. Wang, F. Luo, L. Zhang, D.M. Zhu, and W.C. Zhou, Ceram. Int. 39, 8723 (2013).

    Article  Google Scholar 

  11. Z.W. Zhou, L.S. Chu, and S.C. Hu, Mater. Sci. Eng. B 126, 93 (2006).

    Article  Google Scholar 

  12. R.F. Zhuo, L. Qiao, H.T. Feng, J.T. Chen, D. Yan, Z.G. Wu, and P.X. Yan, J. Appl. Phys. 104, 094101 (2008).

    Article  Google Scholar 

  13. H. Li, Y. Huang, G. Sun, X. Yan, Y. Yang, J. Wang, and Y. Zhang, J. Phys. Chem. C 114, 10088 (2010).

    Article  Google Scholar 

  14. M.-S. Cao, X.-L. Shi, X.-Y. Fang, H.-B. Jin, Z.-L. Hou, W. Zhou, and Y.-J. Chen, Appl. Phys. Lett. 91, 203110 (2007).

    Article  Google Scholar 

  15. Z.W. Zhou, S.K. Liu, and L.X. Gu, J. Appl. Polym. Sci. 80, 1520 (2001).

    Article  Google Scholar 

  16. D.M. Zhu, K. Li, F. Luo, and W.C. Zhou, Appl. Surf. Sci. 255, 6145 (2009).

    Article  Google Scholar 

  17. Y.-H. Yao and Q.-X. Cao, Chin. Phys. B 21, 124205 (2012).

    Article  Google Scholar 

  18. S.Y. Zhang and Q.X. Cao, Adv. Mater. Res. 399–401, 880 (2012).

    Google Scholar 

  19. X.L. Su, W.C. Zhou, J. Xu, Z.M. Li, F. Luo, and D.M. Zhu, J. Alloys Compd. 492, L16 (2010).

    Article  Google Scholar 

  20. S.A. Degterov, E. Jak, P.C. Hayes, and A.D. Pelton, Metall. Mater. Trans. B 32, 643 (2001).

    Article  Google Scholar 

  21. P. Li, H. Liu, Y.-F. Zhang, Y. Wei, and X.-K. Wang, Mater. Chem. Phys. 106, 63 (2007).

    Article  Google Scholar 

  22. Y.P. Chen, G.Y. Xu, T.C. Guo, and N. Zhou, Sci. China Technol. Sci. 55, 623 (2012).

    Article  Google Scholar 

  23. V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, and P. Vilarinho, Surf. Coat. Technol. 180–181, 659 (2004).

    Article  Google Scholar 

  24. X.X. Yan and G.Y. Xu, J. Alloys Compd. 491, 649 (2010).

    Article  Google Scholar 

  25. A.V. Moholkara, S.M. Pawara, K.Y. Rajpurea, V. Ganesanb, and C.H. Bhosalea, J. Alloys Compd. 464, 387 (2008).

    Article  Google Scholar 

  26. X. Su, Y. Jia, J. Wang, J. Xu, X. He, C. Fu, and S. Liu, Ceram. Int. 39, 3651 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolei Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Jia, Y., Liu, X. et al. Preparation, Infrared Emissivity, and Dielectric and Microwave Absorption Properties of Fe-Doped ZnO Powder. J. Electron. Mater. 43, 3942–3948 (2014). https://doi.org/10.1007/s11664-014-3218-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3218-y

Keywords

Navigation