Skip to main content
Log in

Computational Investigation of the Evolution of Intermetallic Compounds Affected by Microvoids During the Solid-State Aging Process in the Cu-Sn System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the impact of microvoids on the microstructural evolution of η-Cu6Sn5 and ɛ-Cu3Sn in the Cu-Sn system is evaluated numerically. Through the use of the multiphase-field method, the systems of interest are allowed to evolve using a solid-state aging temperature of 453 K in conjunction with material parameters and reaction conditions adopted from previous research. The simulation results are then analyzed and compared with previous experiments in terms of the morphological evolution of the intermetallic compounds (IMCs), the IMC layer thicknesses, and the corresponding interfacial roughness. It is shown that the presence of microvoids at the ɛ/Cu interface interferes with the flow of mass throughout the phases, impeding phase transformations and grain coarsening. This ultimately affects the IMC coarsening rate and overall IMC layer thicknesses. Additionally, it was observed that the presence of microvoids at the ɛ/Cu interface affects the formation of both IMC layers and their corresponding interfaces, and the changes in roughness for the interfaces are quantitatively provided. Overall, the simulations are found to be within the range of accepted experimental values for the morphology of the IMC grains, the evolution of IMC layer thicknesses, and the evolution of interface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hong and J. Huh, J. Electron. Mater. 35, 56 (2006).

    Article  CAS  Google Scholar 

  2. M. Park and R. Arróyave, Comput. Mater. Sci. 50, 1692 (2011).

    Article  CAS  Google Scholar 

  3. K. Zhang and C. Zheng, Eng. Fract. Mech. 37, 621 (1990).

    Article  Google Scholar 

  4. C. Liu, K. Tu, T. Sheng, C. Tung, D. Frear, and P. Elenius, J. Appl. Phys. 87, 750 (2000).

    Article  CAS  Google Scholar 

  5. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).

    Article  Google Scholar 

  6. K. Tu and K. Zeng, Mater. Sci. Eng. R 34, 1 (2001).

    Article  Google Scholar 

  7. K. Zeng and K. Tu, Mater. Sci. Eng. R: Reports 38(2), 55 (2002)

    Article  Google Scholar 

  8. K. Zeng, R. Stierman, T. Chiu, D. Edwards, K. Ano, and K. Tu, J. Appl. Phys. 97, 024508 (2005).

    Article  Google Scholar 

  9. S. Kumar (Ph.D. thesis, Purdue University, West Lafayette (2010).

  10. D. Kim, J. Chang, J. Park, and J. Pak, J. Mater. Sci. Mater. Electron. 22(7), 703 (2011).

    Article  CAS  Google Scholar 

  11. T. Laurila, V. Vuorinen, and J. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005).

    Article  Google Scholar 

  12. S. Kumar, K. Kulkarni, C. Handwerker, and M. Dayananda, MS&T 3, 1765 (2007).

    Google Scholar 

  13. A. Paul, M. Van Dal, A. Kodentsov, and F. Van Loo, Acta Mater. 52, 623 (2004).

    Article  CAS  Google Scholar 

  14. K. Weinberg, T. Böhme, and W. Müller, Comp. Mater. Sci. 45, 827 (2009).

    Article  CAS  Google Scholar 

  15. S. Kumar, J. Smetana, D. Love, J. Watkowski, R. Parker, and C. Handwerker, J. Electron. Mater. 40, 2415 (2011).

    Article  CAS  Google Scholar 

  16. A. Paul, C. Ghosh, and W. Boettinger, Metall. Mater. Trans. A 42A, 1 (2011).

    Google Scholar 

  17. W. Peng, E. Monlevade, and M. Marques, Microelectron. Reliab. 47, 2161 (2007).

    Article  CAS  Google Scholar 

  18. J. Kim and J. Yu, Appl. Phys. Lett. 92, 092109 (2008).

    Article  Google Scholar 

  19. J. Kim, J. Yu, and S. Kim, Acta Mater. 57, 5001 (2009).

    Article  CAS  Google Scholar 

  20. F. Gao, J. Qu, and T. Takemoto, J. Electron. Mater. 39, 426 (2010).

    Article  CAS  Google Scholar 

  21. Y. Kim, H. Roh, S. Kim, and Y. Kim, J. Electron. Mater. 39, 2504 (2010).

    Article  CAS  Google Scholar 

  22. C. Yu, Y. Yang, P. Li, J. Chen, and H. Lu, J. Mater. Sci. Mater. Electron. 23, 56 (2012).

    Article  CAS  Google Scholar 

  23. W. Yang, R. Messler, and L. Felton, J. Electron. Mater. 23, 765 (1994).

    Article  CAS  Google Scholar 

  24. X. Lin and L. Luo, J. Electron. Mater. 37, 307 (2007).

    Article  Google Scholar 

  25. F. Van Loo, B. Pieraggi, and R. Rapp, Acta Metall. Mater. 38, 1769 (1990).

    Article  CAS  Google Scholar 

  26. K. Rönkä, van F. Loo, and J. Kivilahti, Metall. Mater. Trans. A 29, 2951 (1998).

    Article  Google Scholar 

  27. D. Kim and J. Pak, J. Mater. Sci. Mater. Electron. 21, 1337 (2010).

    Article  CAS  Google Scholar 

  28. T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, Mater. Sci. Eng. R 68, 1 (2010).

    Article  Google Scholar 

  29. S. Kumar, C. Handwerker, and M. Dayananda, J. Phase Equilib. Diff. 32, 309 (2011).

    Article  CAS  Google Scholar 

  30. V. Talanin, I. Talanin, S. Koryagin, and M. Semikina, SPQEO 9, 77 (2006).

    CAS  Google Scholar 

  31. S. Hu, M. Baskes, and M. Stan, Appl. Phys. Lett. 90, 081921 (2007).

    Article  Google Scholar 

  32. Y. Li, S. Hu, X. Sun, F. Gao, C. Henager, and M. Khaleel, J. Nucl. Mater. 407, 119 (2010).

    Article  CAS  Google Scholar 

  33. M. Park, A. Golovin, and S. Davis, J. Fluid Mech. 560, 415 (2006).

    Article  Google Scholar 

  34. A. Rempel, and M. Worster, J. Cryst. Growth 205, 427 (1999).

    Article  CAS  Google Scholar 

  35. J. Kao, A. Golovin, and S. Davis, J. Fluid Mech. 625, 299 (2009).

    Article  CAS  Google Scholar 

  36. J. Huh, K. Hong, Y. Kim, and K. Kim, J. Electron. Mater. 33, 1161 (2004).

    Article  CAS  Google Scholar 

  37. M. Park and R. Arróyave, Acta Mater. 58, 4900 (2010).

    Article  CAS  Google Scholar 

  38. M. Park, and R. Arróyave, J. Electron. Mater. 39, 2574 (2010).

    Article  CAS  Google Scholar 

  39. M. Park and R. Arróyave, J. Electron. Mater. 38, 2525 (2009).

    Article  CAS  Google Scholar 

  40. M. Park and R. Arróyave, Acta Mater. 60, 923 (2012).

    Article  CAS  Google Scholar 

  41. H. Kim, Y. Won, and Y. Kwak, Scripta Mater. 62, 29 (2010).

    Article  CAS  Google Scholar 

  42. I. Steinbach and F. Pezzolla, Physica D 134, 385 (1999).

    Article  Google Scholar 

  43. S. Kim, W. Kim, and T. Suzuki, Phys. Rev. E 60, 7186 (1999).

    Article  CAS  Google Scholar 

  44. J.Görlich, G. Schmitz, and K. Tu, Appl. Phys. Lett. 86, 053106 (2005).

    Article  Google Scholar 

  45. J. Zhu, L. Chen, J. Shen, and V. Tikare, Comp. Mater. Sci. 20, 37 (2001).

    Article  CAS  Google Scholar 

  46. J. Shim, C. Oh, B. Lee, and D. Lee, Z. Metall. 87, 205 (1996).

    CAS  Google Scholar 

  47. W. Choi and H. Lee, J. Electron. Mater. 29, 1207 (2000).

    Article  CAS  Google Scholar 

  48. C. Shin, Y. Baik, and J. Huh, J. Electron. Mater. 30, 1323 (2001).

    Article  CAS  Google Scholar 

  49. K. Kim, S. Huh, and K. Suganuma, J. Alloys Compd. 352, 226 (2003).

    Article  CAS  Google Scholar 

  50. R. Gagliano, G. Ghosh, and M. Fine, J. Electron. Mater. 31, 1195 (2002).

    Article  CAS  Google Scholar 

  51. R. Lord and A. Umantsev, J. Appl. Phys. 98, 063525 (2005).

    Article  Google Scholar 

  52. B. Lee, N. Hwang, and H. Lee, Acta Mater. 45, 1867 (1997).

    Article  CAS  Google Scholar 

  53. J. Warren, T. Pusztai, L.Környei, and L. Gránásy, Phys. Rev. B 79, 014204 (2009).

    Article  Google Scholar 

  54. J. Li, P. Agyakwa, and C. Johnson, Acta Mater. 59, 1198 (2011).

    Article  CAS  Google Scholar 

  55. C. Chung, J. Duh, and C. Kao, Scripta Mater. 63, 258 (2010).

    Article  CAS  Google Scholar 

  56. D. Yu and L. Wang, J. Alloys Compd. 458, 542 (2008).

    Article  CAS  Google Scholar 

  57. W. Guo, R. Spatschek, and I. Steinbach, Physica D 240, 382 (2011).

    Article  CAS  Google Scholar 

  58. Y. Lee, and J. Duh, J. Mater. Sci. 33, 5569 (1998).

    Article  CAS  Google Scholar 

  59. A. Liu, H. Kim, K. Tu, and P. Totta, J. Appl Phys. 80, 2774 (1996).

    Article  CAS  Google Scholar 

  60. Y. Wu, J. Sees, C. Pouraghabagher, L. Foster, J. Marshall, E. Jacobs, and R. Pinizzotto, J. Electron. Mater. 22, 769 (1993).

    Article  CAS  Google Scholar 

  61. A. Zuruzi, C. Chiu, S. Lahiri, and K. Tu, J. Appl. Phys. 86, 4916 (1999).

    Article  CAS  Google Scholar 

  62. M. Park, S. Gibbons, and R. Arróyave, Acta Mater. 60, 6278 (2012).

    Article  CAS  Google Scholar 

  63. S. Kang, R. Rai, and S. Purushothaman, J. Electron. Mater. 25, 1113 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Arróyave.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, M.S., Gibbons, S.L. & Arróyave, R. Computational Investigation of the Evolution of Intermetallic Compounds Affected by Microvoids During the Solid-State Aging Process in the Cu-Sn System. J. Electron. Mater. 42, 999–1009 (2013). https://doi.org/10.1007/s11664-013-2494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2494-2

Keywords

Navigation