Skip to main content
Log in

Effect of Sintering Temperature on Microstructure, Electrical Properties, and Thermal Expansion of Perovskite-Type La0.8Ca0.2CrO3 Complex Oxides Synthesized by a Combustion Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Perovskite-type La0.8Ca0.2CrO3 complex oxides were synthesized by a combustion method. Microstructural evolution, electrical properties, and thermal expansion behavior of the ceramics were investigated in the sintering temperature range of 1250°C to 1450°C. It was found that the electrical conductivity (σ e) remarkably improved with increasing sintering temperature from 1250°C to 1400°C, ascribed to the development of microstructural densification, whereas it declined slightly above 1400°C due to generation of excessive liquid. The specimen sintered at 1400°C had a maximum conductivity of 31.6 S cm−1 at 800°C, and lowest activation energy of 0.148 eV. The improvement of the thermal expansion coefficient (TEC) with increasing sintering temperature was monotonic as a result of the microstructural densification of the materials. The TEC of La0.8Ca0.2CrO3 sintered at 1400°C was about 10.5 × 10−6 K−1, being consistent with other components as high-temperature conductors. With respect to microstructure, electrical properties, and thermal expansion, the preferable sintering temperature was ascertained to be about 1400°C, which is much lower than for the traditional solid-state reaction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Faduska and A.O. Isenberg, J. Power Sources 10, 89 (1983).

    Article  Google Scholar 

  2. N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993).

    Article  CAS  Google Scholar 

  3. S.P.S. Badwal, Solid State Ionics 143, 39 (2001).

    Article  CAS  Google Scholar 

  4. I. Yasuda and T. Hikita, J. Electrochem. Soc. 140, 1699 (1993).

    Article  CAS  Google Scholar 

  5. L. Groupp and H.U. Adersen, J. Am. Ceram. Soc. 59, 449 (1976).

    Article  CAS  Google Scholar 

  6. M.M. Rashad and S.M. El-Sheikh, Mater. Res. Bull. 46, 469 (2011).

    Article  CAS  Google Scholar 

  7. S.R. Nair, R.D. Purohit, A.K. Tyagi, P.K. Sinha, and B.P. Sharma, Mater. Res. Bull. 43, 1573 (2008).

    Article  CAS  Google Scholar 

  8. F. Deganello, G. Marcì and G. Deganello, J. Eur. Ceram. Soc. 29, 439 (2009)

  9. L.A. Chick, L.R. Pederson, G.D. Maupin, and J.L. Bates, Mater. Lett. 10, 6 (1990).

    Article  CAS  Google Scholar 

  10. S.M. Alexander, C. Colleen, P.S. Katherine, L. David, and V. Arvind, Sep. Purif. Technol. 25, 117 (2001).

    Article  Google Scholar 

  11. L.A. Chick, J. Liu, J.W. Stevenson, T.R. Armstrong, D.E. McCready, G.D. Maupin, G.W. Coffey, and C.A. Coyle, J. Am. Ceram. Soc. 80, 2109 (1997).

    Article  CAS  Google Scholar 

  12. T.R. Armstrong, J.W. Stevenson, K. Hansinska, and D.E. McCready, J. Electrochem. Soc. 145, 4282 (1998).

    Article  CAS  Google Scholar 

  13. A. Chakraborty, R.N. Basu, and H.S. Maiti, Mater. Lett. 45, 162 (2000).

    Article  CAS  Google Scholar 

  14. S.L. Wang, B. Lin, K. Xie, Y.C. Dong, X.Q. Liu, and G.Y. Meng, J. Alloy. Compd. 468, 499 (2009).

    Article  CAS  Google Scholar 

  15. J.W. Stevenson, P.F. Hallman, T.R. Armstrong, and L.A. Chick, J. Am. Ceram. Soc. 78, 507 (1995).

    Article  CAS  Google Scholar 

  16. S.H. Pi, S.B. Lee, R.H. Song, J.W. Lee, T.H. Lim, S.J. Park, D.R. Shin, and C.O. Park, Int. J. Hydrogen Energ. 36, 13735 (2011).

    Article  CAS  Google Scholar 

  17. H. Xiong, G.J. Zhang, and J.Y. Zheng, Mater. Lett. 51, 61 (2001).

    Article  CAS  Google Scholar 

  18. H. Hayashi, M. Watanabe, M. Ohuchida, H. Inaba, Y. Hiei, T. Yamamoto, and M. Mori, Solid State Ionics 144, 301 (2001).

    Article  CAS  Google Scholar 

  19. N. Sakai, H. Fjellvåg, and B.C. Hauback, J. Solid State Chem. 121, 202 (1996).

    Article  CAS  Google Scholar 

  20. R.K. Gupta and C.M. Whang, Solid State Ionics 178, 1617 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, W., Wang, Y., Li, A. et al. Effect of Sintering Temperature on Microstructure, Electrical Properties, and Thermal Expansion of Perovskite-Type La0.8Ca0.2CrO3 Complex Oxides Synthesized by a Combustion Method. J. Electron. Mater. 42, 939–943 (2013). https://doi.org/10.1007/s11664-012-2464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2464-0

Keywords

Navigation