Skip to main content
Log in

Effect of Ag on the Microstructure of Sn-8.5Zn-xAg-0.01Al-0.1Ga Solders Under High-Temperature and High-Humidity Conditions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of Ag on the microstructure and thermal behavior of Sn-Zn and Sn-8.5Zn-xAg-0.01Al-0.1Ga solders (x from 0.1 wt.% to 1 wt.%) under high-temperature/relative humidity conditions (85°C/85% RH) for various exposure times was investigated. Scanning electron microscopy (SEM) studies revealed that, in all the investigated solders, the primary α-Zn phases were surrounded by eutectic β-Sn/α-Zn phases, in which fine Zn platelets were dispersed in the β-Sn matrix. SEM micrographs revealed that increase of the Ag content to 1 wt.% resulted in coarsening of the dendritic plates and diminished the Sn-9Zn eutectic phase in the microstructure. Differential scanning calorimetry (DSC) studies revealed that the melting temperature of Sn-8.5Zn-xAg-0.01Al-0.1Ga solder decreased from 199.6°C to 199.2°C with increase of the Ag content in the solder alloy. Both ZnO and SnO2 along with Ag-Zn intermetallic compound (IMC) were formed on the surface when Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga solder was exposed to high-temperature/high-humidity conditions (85°C/85% RH) for 100 h. The thickness of the ZnO phase increased as the Ag content and exposure time were increased. Sn whiskers of various shapes and lengths varying from 2 μm to 5 μm were extruded from the surface when the investigated five-element solder with Ag content varying from 0.5 wt.% to 1 wt.% was exposed to similar temperature/humidity conditions for 250 h. The length and density of the whiskers increased with further increase of the exposure time to 500 h and the Ag content in the solder to 1 wt.%. The Sn whisker growth was driven by the compressive stress in the solder, which was generated due to the volume expansion caused by ZnO and Ag-Zn intermetallic compound formation at the grain boundaries of Sn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. McCormack, S. Jin, H.S. Chen, and D.A. Machusak, J. Electron. Mater. 23, 687 (1994).

    Article  CAS  Google Scholar 

  2. J.M. Song, T.S. Lui, G.F. Lan, and L.H. Chen, J. Alloys Compd. 379, 233 (2004).

    Article  CAS  Google Scholar 

  3. S.P. Yu, M.C. Wang, and M.H. Hon, J. Mater. Res. 16, 76 (2001).

    Article  CAS  Google Scholar 

  4. W. Hui, X. Sonbai, Z. Feng, and C. Wenxue, Rare Met. 28, 600 (2009).

    Article  Google Scholar 

  5. M. McCormack, G.W. Kammlott, H.S. Chen, and S. Jin, Appl. Phys. Lett. 65, 1100 (1994).

    Article  CAS  Google Scholar 

  6. Y.S. Kim, K.S. Kim, C.W. Hwang, and K. Suganuma, J. Alloys Compd. 352, 237 (2003).

    Article  CAS  Google Scholar 

  7. T. Kiga, S. Hattori, and Y. Iwanabe, J. Jpn. Inst. Electron. Packag. 6, 420 (2003).

    Article  CAS  Google Scholar 

  8. J. Jiang, J.E. Lee, K.S. Kim, and K. Suganuma, J. Alloys Compd. 462, 244 (2008).

    Article  CAS  Google Scholar 

  9. K.S. Kim, T.S. Matsura, and K. Suganama, J. Electron. Mater. 35, 6 (2006).

    Google Scholar 

  10. T.K. Yeh, K.L. Lin, and B. Salam, Solder. Surf. Mt. Technol. 21, 19 (2009).

    CAS  Google Scholar 

  11. U.S. Mohanty and K.L. Lin, Corros. Sci. 49, 2815 (2007).

    Article  CAS  Google Scholar 

  12. Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa, Binary Alloy Phase Diagrams (Materials Park, OH: ASM International, 1992).

    Google Scholar 

  13. M. Mc Cormack and S. Jin, J. Electron. Mater. 23, 635 (1999).

    Article  Google Scholar 

  14. K.N. Prabhu, D. Deshpande, and Satyanarayan, Mater. Sci. Eng. A 533, 64–70 (2012).

    Article  CAS  Google Scholar 

  15. W.X. Chen, s.B. Xue, H. Wang, J.X. Wang, Z.J. Han, and L.L. Gao, J. Mater. Sci. Mater. Electron. 21, 461 (2010).

    Article  CAS  Google Scholar 

  16. Y.H. Hu, S.B. Xue, W.X. Chen, and H. Wang, J. Mater. Eng. 16, 60 (2009).

    Google Scholar 

  17. C.W. Hwang and K.L. Lin, J. Mater. Res. 18, 1528 (2003).

    Article  Google Scholar 

  18. T.B. Massalski, ed., Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986), Vol. 1.

  19. K.I. Chen and K.L. Lin, J. Electron. Mater. 31, 861 (2002).

    Article  CAS  Google Scholar 

  20. C.J. Slunder and W.K. Boyd, Zinc: Its Corrosion Resistance (New York, USA: International Lead Zinc Research Organisation Inc., 1983).

    Google Scholar 

  21. J.W.O. Senbach, J.M. Delucca, B.D. Potteiger, R.L. Shook and F.A. Iaocchi, Proceedings of the 55th Electronic Components and Technology Conference (NEMI Tin Workshop, Orlando, FL, USA: IEEE Conference Publications, June 1st 2005).

  22. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Bleiser, and K.K. Kelly, Selected Values of the Thermodynamic Properties of Binary Alloys (Materials Park, OH: American Society of Metals, 1973).

    Google Scholar 

  23. C. Wagner, J. Electrochem. Soc. 9, 369 (1952).

    Article  Google Scholar 

  24. K.L. Lin, K.I. Chen, and P.C. Shi, J. Electron. Mater. 32, 1490 (2003).

    Article  CAS  Google Scholar 

  25. M. Ramirez, L. Henniken, and S. Virtanea, Appl. Surf. Sci. 257, 6481 (2011).

    Article  CAS  Google Scholar 

  26. F.Y. Hung, H.M. Lin, P.S. Chen, T.S. Lui, L.H. Chen, J. Alloys Compd. 415, 85 (2006).

    Google Scholar 

  27. J.E. Lee, K.S. Kim, M. Inoue, J. Jiang, and K. Suganama, J. Alloys Compd. 454, 310 (2008).

    Article  CAS  Google Scholar 

  28. M. Ahmed, T. Fouzder, A. Sharif, A.K. Gain, and Y.C. Chan, Microelectron. Reliab. 49, 746 (2009).

    Article  Google Scholar 

  29. U. Lindborg, Acta Metall. 24, 181 (1976).

    Article  CAS  Google Scholar 

  30. K.N. Tu, Mater. Chem. Phys. 46, 217 (1996).

    Article  CAS  Google Scholar 

  31. M. Endo, S. Higuchi, Y. Tokuda, and Y. Sakabe, Proceedings of the 23rd International Symposium for Testing & Failure Analysis, Materials Park, OH: ASM international, pp. 305–311, 1997.

  32. Y. Nakadaira, S. Jeong, J. Shim, J. Seo, S. Min, T. Cho, S. Kang, and S. Oh, Microelectron. Reliab. 47, 1928 (2007).

    Article  CAS  Google Scholar 

  33. C.F. Yu, C.M. Chan, and K.C. Hsieh, Microelectron. Reliab. 50, 1146 (2010).

    Article  CAS  Google Scholar 

  34. H. Ye, S. Xue, and M. Pecht, J. Mater. Res. 1 (2012).

  35. P. Villars, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (Materials Park, OH: ASM International, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Mohanty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, T.K., Lin, K.L. & Mohanty, U.S. Effect of Ag on the Microstructure of Sn-8.5Zn-xAg-0.01Al-0.1Ga Solders Under High-Temperature and High-Humidity Conditions. J. Electron. Mater. 42, 616–627 (2013). https://doi.org/10.1007/s11664-012-2389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2389-7

Keywords

Navigation