Skip to main content
Log in

Thermal Cycling, Mechanical Degradation, and the Effective Figure of Merit of a Thermoelectric Module

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric modules experience performance reduction and mechanical failure due to thermomechanical stresses induced by thermal cycling. The present study subjects a thermoelectric module to thermal cycling and evaluates the evolution of its thermoelectric performance through measurements of the thermoelectric figure of merit, ZT, and its individual components. The Seebeck coefficient and thermal conductivity are measured using steady-state infrared microscopy, and the electrical conductivity and ZT are evaluated using the Harman technique. These properties are tracked over many cycles until device failure after 45,000 thermal cycles. The mechanical failure of the TE module is analyzed using high-resolution infrared microscopy and scanning electron microscopy. A reduction in electrical conductivity is the primary mechanism of performance reduction and is likely associated with defects observed during cycling. The effective figure of merit is reduced by 20% through 40,000 cycles and drops by 97% at 45,000 cycles. These results quantify the effect of thermal cycling on a commercial TE module and provide insight into the packaging of a complete TE module for reliable operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area, m2

I :

Electrical current, A

k :

Thermal conductivity, W m−1 K−1

L :

Length of TE element, mm

q :

Heat flow, W

q″:

Heat flux, W m−2

T :

Temperature, °C

V :

Voltage, V

x :

Position along direction of conductive heat flow, mm

ZT :

Thermoelectric figure of merit

α :

Seebeck coefficient, V K−1

ρ :

Electrical resistivity, Ω m

σ :

Electrical conductivity, Ω−1 m−1

0:

At 0 cycles

E:

Electrical component of voltage

OC:

Open-circuit voltage

pp:

Peak-to-peak voltage

ref:

Reference layer

TE:

Thermoelectric

TE leg:

Single thermoelectric leg element

T:

Thermoelectrical component of voltage

Total:

Total voltage

References

  1. K. Zorbas, E. Hatzikraniotis, and K. Paraskevopoulos, 5th European Conf. of Thermoelectrics, Odessa, Ukraine (2007).

  2. J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).

    Article  CAS  Google Scholar 

  3. K. Zorbas, E. Hatzikraniotis, K. M. Paraskevopoulos, and Th. Kyratsi, AIP Conf. Proceedings, vol. 1203, pp. 1137–1142 (2010)

  4. E. Hatzikraniotis, International Congress on Advances in Applied Physics and Materials Science, Antalya, Turkey, pp. 287–289 (2012)

  5. S. LeBlanc, Y. Gao, and K. E. Goodson, Proc. of IMECE, Boston, MA, pp. 1–7 (2008).

  6. E.W. Miller, T.J. Hendricks, and R.B. Peterson, J. Electron. Mater. 38, 1206 (2009).

    Article  CAS  Google Scholar 

  7. I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, Nat. Nanotechnol. 4, 235 (2009).

    Article  CAS  Google Scholar 

  8. L.E. Bell, Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  9. Y. Yang, X.-J. Wei, and J. Liu, J. Phys. D Appl. Phys. 40, 5790 (2007).

    Article  CAS  Google Scholar 

  10. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  11. D.L. Medlin and G.J. Snyder, Curr. Opin. Colloid Interface Sci. 14, 226 (2009).

    Article  CAS  Google Scholar 

  12. E. Hatzikraniotis, K.T. Zorbas, I. Samaras, T. Kyratsi, and K.M. Paraskevopoulos, J. Electron. Mater. 39, 2112 (2009).

    Article  Google Scholar 

  13. Y. Gao, A.M. Marconnet, M.A. Panzer, S. LeBlanc, S. Dogbe, Y. Ezzahri, A. Shakouri, and K.E. Goodson, J. Electron. Mater. 39, 1456 (2010).

    Article  CAS  Google Scholar 

  14. Y. Hori, D. Kusano, T. Ito, and K. Izumi, Eighteenth International Conference on Thermoelectrics (2000).

  15. T. C. Harman, J. H. Carn, and M. J. Logan, J. Appl. Phys. 30 (1959).

  16. D.M. Rowe and G. Min, J. Power Sources 73, 193 (1998).

    Article  CAS  Google Scholar 

  17. Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 92, 101910 (2008).

    Article  Google Scholar 

  18. R.G. de Villoria, N. Yamamoto, A. Miravete, and B.L. Wardle, Nanotechnology 22, 185502 (2011).

    Article  Google Scholar 

  19. W. Park, M.T. Barako, A.M. Marconnet, M. Asheghi, and K.E. Goodson, Proc. of ITHERM, San Diego, CA (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Barako.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barako, M.T., Park, W., Marconnet, A.M. et al. Thermal Cycling, Mechanical Degradation, and the Effective Figure of Merit of a Thermoelectric Module. J. Electron. Mater. 42, 372–381 (2013). https://doi.org/10.1007/s11664-012-2366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2366-1

Keywords

Navigation