Skip to main content
Log in

High-Temperature Thermoelectric Properties of Compounds in the System Zn x In y O x+1.5y

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Based on results obtained utilizing combinatorial chemistry techniques to screen the thermoelectric power factor of materials in the system Zn x In y O x+1.5y , several multiphase candidates were down-selected and investigated in terms of their thermoelectric response from room temperature to 1050°C. While the screening experiments suggested that peaks in the power factor occur at relatively high indium oxide content, only the thermoelectric properties of zinc-oxide-rich homologous layered phases in the system (In2O3)(ZnO) k have been well documented, since the phases where k < 3 cannot be easily formed. In the present study, indium-oxide-rich materials in the system In2O3–(In2O3)(ZnO)3 were fabricated and their figures of merit were determined. The results suggest that the indium-oxide-rich phases have improved figures of merit, especially at elevated temperatures, relative to the best performing k phases by combining the high power factor of In2O3 and the low thermal conductivity of (In2O3)(ZnO) k .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Narducci, Appl. Phys. Lett. 99, 102104 (2011).

    Article  Google Scholar 

  2. M.S. Dresslhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, and J.P. Fleurial, Adv. Mater. 19, 1 (2007).

    Google Scholar 

  3. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008).

    Article  CAS  Google Scholar 

  4. W. Pitschke, J. Werner, G. Behr, and K. Koumoto, J. Solid State Chem. 153, 349 (2000).

    Article  CAS  Google Scholar 

  5. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, 12685 (1997).

    Article  Google Scholar 

  6. Q. Yao, D.L. Wang, L.D. Chen, X. Shi, and M. Zhou, J. Appl. Phys. 97, 1898443 (2005).

    Article  Google Scholar 

  7. S. Tajima, T. Tani, S. Isobe, and K. Koumoto, Mater. Sci. Eng., B 86, 20 (2001).

    Google Scholar 

  8. E. Guilmeau, D. Berardan, C. Simon, A. Maignan, B. Raveau, D. Ovono, and F. Delorme, J. Appl. Phys. 106, 053715 (2009).

    Article  Google Scholar 

  9. Y. Cui, J.R. Salvador, J. Yang, H. Wang, G. Amow, and H. Kleike, J. Electron. Mater. 38, 1002 (2009).

    Article  CAS  Google Scholar 

  10. D. Berardan, E. Guilmeau, A. Maignan, and B. Raveau, Solid State Commun. 146, 97 (2008).

    Article  CAS  Google Scholar 

  11. H. Kaga, R. Asahi, and T. Tani, J. Appl. Phys. 43, 3543 (2004).

    Google Scholar 

  12. H. Ohta, W.S. Seo, and K. Koumoto, J. Am. Ceram. Soc. 79, 2193 (1996).

    Article  CAS  Google Scholar 

  13. M. Kazeoka, H. Hiramatsu, W.S. Seo, and K. Koumoto, J. Mater. Res. 13, 523 (1998).

    Article  CAS  Google Scholar 

  14. M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).

    Article  CAS  Google Scholar 

  15. N. Vogel-Schäuble, R. Dujardin, A. Weidenkaff, and M.H. Aguire, J. Electron. Mater. 41, 1606 (2011).

    Article  Google Scholar 

  16. D. Berardan, C. Byl, and N. Dragoe, J. Am. Ceram. Soc. 93, 2352 (2010).

    Article  CAS  Google Scholar 

  17. D. Berardan, E. Guilmeau, M. Maignan, and B. Raveau, J. Appl. Phys. 104, 064918 (2008).

    Article  Google Scholar 

  18. T. Moriga, D.D. Edwards, T.O. Mason, G.B. Palmer, K.R. Poeppelmeier, J.L. Schindler, C.R. Kannewurf, and I. Nakabayashi, J. Am. Ceram. Soc. 81, 1310 (1998).

    Article  CAS  Google Scholar 

  19. O.J. Gregory and M. Amani, J. Electrochem. Soc. 158, J15 (2011).

    Article  CAS  Google Scholar 

  20. E.M. Hopper, Q. Zhu, J.-H. Song, H. Peng, A.J. Freeman, and T.O. Mason, J. Appl. Phys. 109, 013713 (2011).

    Article  Google Scholar 

  21. D.P. Dutta, V. Sudarsan, P. Srinivasu, A. Vinu, and A.K. Tyagi, J. Phys. Chem. C 112, 6781 (2008).

    Article  CAS  Google Scholar 

  22. D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham, J. Am. Ceram. Soc. 73, 2187 (1990).

    Article  CAS  Google Scholar 

  23. H. Peng, J.H. Songt, E.M. Hopper, Q. Zhu, T.O. Mason, and A.J. Freeman, Chem. Mater. 24, 106 (2012).

    Article  CAS  Google Scholar 

  24. K. Ellmer and R. Mientus, Thin Solid Films 516, 5829 (2008).

    Article  CAS  Google Scholar 

  25. G. Jonker, Philips J. Res. 23, 131 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto J. Gregory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amani, M., Tougas, I.M., Gregory, O.J. et al. High-Temperature Thermoelectric Properties of Compounds in the System Zn x In y O x+1.5y . J. Electron. Mater. 42, 114–120 (2013). https://doi.org/10.1007/s11664-012-2300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2300-6

Keywords

Navigation