, Volume 42, Issue 1, pp 21-25

Implantation Studies on Silicon-Doped GaN

Abstract

Silicon-doped GaN layers grown by low-pressure metalorganic vapor-phase epitaxy with Si concentrations ranging from 2 × 1017 Si/cm3 to 9.2 × 1018 Si/cm3 were investigated by means of the perturbed angular correlation (PAC) technique applied to implanted 111In(Cd). An undoped GaN film is used as a reference. The Si atoms replace Ga atoms in the lattice, and silicon, being a group IV element, acts as a donor on the Ga site and contributes one extra electron to the conduction band. Hall-effect measurements confirmed that the free charge carrier density is essentially increased and of the order of the silicon concentration. PAC investigations of the annealing behavior after implantation of the 111In probes show that best recovery is achieved after annealing at 1200 K and that high silicon concentrations make GaN films more stable at high temperatures. Further, it was found that the temperature dependence of the electric field gradient is reduced by increasing Si concentrations.