Skip to main content
Log in

In Situ Stress Measurements During GaN Growth on Ion-Implanted AlN/Si Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

In situ wafer curvature measurements were used in combination with postgrowth structural characterization to study the evolution of film stress and microstructure in GaN layers grown by metalorganic chemical vapor deposition on N+ ion-implanted AlN/Si (111) substrates. The results were compared with growth on identical unimplanted substrates. In situ stress measurements revealed that, for the unimplanted sample, the GaN initiated growth under compressive stress of −1.41 GPa which arose due to lattice mismatch with the AlN buffer layer. In contrast, GaN growth on the ion-implanted sample began at lower compressive stress of −0.84 GPa, suggesting a reduction in epitaxial stress. In both cases, the compressive growth stress was fully relaxed after ~0.7 μm and minimal tensile stress was generated during growth. During post-growth cooling, tensile stress was introduced in the GaN layer of both samples due to thermal expansion mismatch. Post-growth optical microscopy characterization, however, demonstrated that the ion-implanted sample had lower density of channeling cracks compared with the unimplanted sample. Cross-sectional transmission electron microscopy images of the sample grown on ion-implanted Si with no post-implantation nitrogen annealing revealed the formation of horizontal cracks in the implanted region beneath the AlN buffer layer. The weakened layer acts to decouple the GaN film from the Si substrate and thereby reduces the density of channeling cracks in the film after growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, III-V Compound Semiconductors: Integration with Silicon-Based Microelectronics, ed. T. Li, M. Mastro, and A. Dadgar (CRC Press, 2011), p. 51.

  2. A.E. Romanov and J.S. Speck, Appl. Phys. Lett. 83, 2569 (2003).

    Article  CAS  Google Scholar 

  3. A.E. Romanov, G.E. Beltz, P. Cantu, F. Wu, S. Keller, S.P. DenBaars, and J.S. Speck, Appl. Phys. Lett. 89, 161922 (2006).

    Article  Google Scholar 

  4. L.T. Romano, C.G. Van de Walle, J.W. Ager, W. Gotz, and R.S. Kern, J. Appl. Phys. 87, 7745 (2000).

    Article  CAS  Google Scholar 

  5. H. Ishikawa, G.Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, and M. Umeno, Jpn. J. Appl. Phys. 38, L492 (1999).

    Article  CAS  Google Scholar 

  6. M.H. Kim, Y.G. Do, H.C. Kang, D.Y. Noh, and S.J. Park, Appl. Phys. Lett. 79, 2713 (2001).

    Article  CAS  Google Scholar 

  7. H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U.K. Mishra, J.S. Speck, S.P. DenBaars, and J.A. Freitas, J. Appl. Phys. 89, 7846 (2001).

    Article  CAS  Google Scholar 

  8. S. Raghavan and J.M. Redwing, J. Appl. Phys. 98, 023515 (2005).

    Article  Google Scholar 

  9. S.A. Nikishin, N.N. Faleev, V.G. Antipov, S. Francoeur, L. Grave de Peralta, G.A. Seryogin, H. Temkin, T.I. Prokofyeva, M. Holtz, and S.N.G. Chu, Appl. Phys. Lett. 75, 2073 (1999).

    Article  CAS  Google Scholar 

  10. E. Feltin, B. Beaumont, M. Laugt, P. De Mierry, P. Vennegues, H. Lahreche, M. Leroux, and P. Gibart, Appl. Phys. Lett. 79, 3230 (2001).

    Article  CAS  Google Scholar 

  11. H. Amano, M. Iwaya, T. Kashima, M. Katsuragawa, I. Akasaki, J. Han, S. Hearne, J.A. Floro, E. Chason, and J. Figiel, Jpn. J. Appl. Phys. 37, L1540 (1998).

    Article  Google Scholar 

  12. A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, Jpn. J. Appl. Phys. 39, L1183 (2000).

    Article  CAS  Google Scholar 

  13. E.K. Koh, Y.J. Park, E.K. Kim, C.S. Park, S.H. Lee, J.H. Lee, S.H. Choh, and J. Crys, Growth 218, 214 (2000).

    Article  CAS  Google Scholar 

  14. M. Jamil, J.R. Grandusky, V. Jindal, F. Shahedipour-Sandvik, S. Guha, and M. Arif, Appl. Phys. Lett. 87, 082103 (2005).

    Article  Google Scholar 

  15. M. Jamil, J.R. Grandusky, V. Jindal, N. Tripathi, and F. Shahedipour-Sandvik, J. Appl. Phys. 102, 023701 (2007).

    Article  Google Scholar 

  16. A. Dadgar, F. Schulze, T. Zettler, K. Haberland, R. Clos, G. Straburger, J. Blasing, A. Diez, and A. Krost, J. Cryst. Growth 272, 72 (2004).

    Article  CAS  Google Scholar 

  17. G.G. Stoney, Proc. R. Soc. Lond. 82, 172 (1909).

    Article  CAS  Google Scholar 

  18. P.H. Townsend, D.M. Barnett, and T.A. Brunner, J. Appl. Phys. 62, 4438 (1987).

    Article  Google Scholar 

  19. S. Hearne, E. Chason, J. Han, J.A. Floro, J. Figiel, and J. Hunter, Appl. Phys. Lett. 74, 356 (1999).

    Article  CAS  Google Scholar 

  20. S. Raghavan and J.M. Redwing, J. Appl. Phys. 98, 023514 (2005).

    Article  Google Scholar 

  21. W.G. Breiland, S.R. Lee, and D.D. Koleske, J. Appl. Phys. 95, 3453 (2004).

    Article  CAS  Google Scholar 

  22. A.D. Bykhovski, B.L. Gelmont, and M.S. Shur, J. Appl. Phys. 78, 3691 (1995).

    Article  CAS  Google Scholar 

  23. D. Holec, Y.C. Zhang, D.V.S. Rao, M.J. Kappers, C. McAleese, and C.J. Humphreys, J. Appl. Phys. 104, 123514 (2008).

    Article  Google Scholar 

  24. P. Cantu, F. Wu, P. Waltereit, S. Keller, A.E. Romanov, U.K. Mishra, S.P. DenBaars, and J.S. Speck, Appl. Phys. Lett. 83, 674 (2003).

    Article  CAS  Google Scholar 

  25. J.F. Wang, D.Z. Yao, J. Chen, J.J. Zhu, D.G. Zhao, D.S. Jiang, H. Yang, and J.W. Liang, Appl. Phys. Lett. 89, 152105 (2006).

    Article  Google Scholar 

  26. V. Srikant, J.S. Speck, and D.R. Clarke, J. Appl. Phys. 82, 4286 (1997).

    Article  CAS  Google Scholar 

  27. P. Gay, P.B. Hirsch, and A. Kelly, Acta Metall. 1, 315 (1953).

    Article  CAS  Google Scholar 

  28. C.G. Dunn and E.F. Koch, Acta Metall. 5, 548 (1957).

    Article  CAS  Google Scholar 

  29. M.A. Moram and M.E. Vickers, Rep. Prog. Phys. 72, 036502 (2009).

    Article  Google Scholar 

  30. J.M. Cowley and Y. Huang, Ultramicroscopy 40, 171 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan M. Redwing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagnon, J.C., Tungare, M., Weng, X. et al. In Situ Stress Measurements During GaN Growth on Ion-Implanted AlN/Si Substrates. J. Electron. Mater. 41, 865–872 (2012). https://doi.org/10.1007/s11664-011-1852-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1852-1

Keywords

Navigation