Skip to main content
Log in

Finite-Element Analysis of Current-Induced Thermal Stress in a Conducting Sphere

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Understanding the electrothermal-mechanical behavior of electronic interconnects is of practical importance in improving the structural reliability of electronic devices. In this work, we use the finite-element method to analyze the Joule-heating-induced thermomechanical deformation of a metallic sphere that is sandwiched between two rigid plates. The deformation behavior of the sphere is elastic–perfectly plastic with Young’s modulus and yield stress decreasing with temperature. The mechanical stresses created by Joule heating are found to depend on the thermal and mechanical contact conditions between the sphere and the plates. The temperature rise in the sphere for the diathermal condition between the sphere and the plates deviates from the square relation between Joule heat and electric current, due to the temperature dependence of the electrothermal properties of the material. For large electric currents, the simulations reveal the decrease of von Mises stress near the contact interfaces, which suggests that current-induced structural damage will likely occur near the contact interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Giacomo, Reliability of Electronic Packages and Semiconductor Devices (New York: McGraw-Hill, 1996).

    Google Scholar 

  2. N. Chandler, GEC J. Tech. 14, 115 (1997).

    Google Scholar 

  3. P. Rolicz, J. Appl. Phys. 49, 4363 (1978).

    Article  Google Scholar 

  4. F.Q. Yang, J. Appl. Phys. 106, 113536 (2009).

    Article  Google Scholar 

  5. F.Q. Yang and L.N. An, Int. J. Appl. Electromagn. Mech. 32, 125 (2010).

    Google Scholar 

  6. F.Q. Yang and W. Song, Int. J. Appl. Electromagn. Mech. 27, 9 (2008).

    Google Scholar 

  7. X. Wang, S.R. Casolco, G. Xu, and J.E. Garay, Acta Mater. 55, 3611 (2007).

    Article  CAS  Google Scholar 

  8. A. Cincotti, A.M. Locci, R. Orrù, and G. Cao, AIChE J. 53, 703 (2007).

    Article  CAS  Google Scholar 

  9. F.Z. Kong, W.Y. Yin, J.F. Mao, and Q.H. Liu, IEEE Trans. Adv. Packag. 33, 729 (2010).

    Article  Google Scholar 

  10. X.P. Wang, W.P. Yin, and S. He, IEEE Trans. Electron Dev. 57, 1382 (2010).

    Article  CAS  Google Scholar 

  11. K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Van der Biest, Acta Mater. 53, 4379 (2005).

    Article  CAS  Google Scholar 

  12. W.D. Callister Jr. and D.G. Rethwisch, Materials Science and Engineering: an Introduction, 8th ed. (New Jersey: Wiley, 2010).

    Google Scholar 

  13. P.T. Vianco, J.A. Rejent, and A.C. Kilgo, J. Electron. Mater. 32, 142 (2003).

    Article  CAS  Google Scholar 

  14. H.E. Fang, C.L. Chow, and F. Yang, Key Eng. Mater. 145–149, 367 (1998).

    Article  Google Scholar 

  15. ABAQUS User Manual, V. 6.9 (Hibbit, Karlsson, Sorensen, Inc., Rhode Island, 1994).

  16. X.F. Li, F.Q. Zu, H.F. Ding, J. Yu, L.J. Liu, Q. Li, and Y. Xi, Phys. B 358, 126 (2005).

    Article  CAS  Google Scholar 

  17. A. Kumar and O.P. Katyal, J. Mater. Sci. Lett. 9, 1094 (1990).

    Article  CAS  Google Scholar 

  18. W. Hemminger and R. Jugel, Int. J. Thermophys. 6, 483 (1985).

    Article  CAS  Google Scholar 

  19. C.Y. Ho, R.W. Powell, and P.E. Liley, J. Phys. Chem. Ref. Data 1, 279 (1972).

    Article  CAS  Google Scholar 

  20. B.B. Alchagirov and A.M. Chochaeva, High Temp. 38, 44 (2000).

    Article  CAS  Google Scholar 

  21. P.J. Adams (MS Thesis, Massachusetts Institute of Technology, 1986).

  22. F. Yasumasa and O. Teruaki, J. Solid Mech. Mater. Eng. 2, 981 (2008).

    Article  Google Scholar 

  23. W.J. Tomlinson and A. Fullylove, J. Mater. Sci. 27, 5777 (1992).

    Article  CAS  Google Scholar 

  24. F. Gao, J. Qu, H. Nishikawa, and T. Takemoto, Proc. 58th Electron. Comp. Tech. Conf. ECTC (2008), pp. 466–471.

  25. V.T. Deshpande and D.B. Sirdeshmukh, Acta Cryst. 14, 355 (1961).

    Article  CAS  Google Scholar 

  26. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, 3rd ed. (New York: McGraw-Hill Book, 1970).

    Google Scholar 

  27. M.M. Chaudhri, I.M. Hutchings, and P.L. Makin, Phil. Mag. 49, 493 (1984).

    Article  Google Scholar 

  28. H. Hashimoto, Z.M. Sun, and T. Abe, Scripta Mater. 49, 997 (2003).

    Article  CAS  Google Scholar 

  29. S.D. Mesarovic and N.A. Fleck, Int. J. Solids Struct. 37, 7071 (2000).

    Article  Google Scholar 

  30. F.Q. Yang, L.L. Peng, and K. Okazaki, Metall. Mater. Trans. A 35, 3323 (2004).

    Article  Google Scholar 

  31. F.Q. Yang, L.L. Peng, and K. Okazaki, J. Mater. Res. 19, 1243 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Yang, F. Finite-Element Analysis of Current-Induced Thermal Stress in a Conducting Sphere. J. Electron. Mater. 41, 352–361 (2012). https://doi.org/10.1007/s11664-011-1817-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1817-4

Keywords

Navigation