Skip to main content
Log in

Thermodynamic Description of the Quaternary Ag-Cu-In-Sn System

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Due to new regulations, the classic Sn-37Pb (wt.%) solder must be replaced by lead-free material. There are many alloys that could be used instead of this classic lead solder, including quaternary Ag-Cu-In-Sn alloy. The CALPHAD method was used for thermodynamic description of this quaternary system. Good agreement between calculation and available experimental information was found. Solidification of the promising lead-free solder Sn-1.5Ag-0.7Cu-9.5In (wt.%) was performed using the Scheil approach, and good agreement between this calculation and differential thermal analysis results was found. The obtained set of Gibbs energy functions can be used in the future for expanding the quaternary system to high-order ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.H. Lee, C.W. Lee, and J.H. Kim, Quaternary Pb-free Solder Composition Incorporating Sn-Ag-Cu-In (Patentdocs 2008), http://www.faqs.org/patents/app/20080292493. Accessed 10 January 2011.

  2. L. Kaufman and H. Bernstein, Computer Calculations of Phase Diagrams (New York: Academic, 1970).

    Google Scholar 

  3. F.H. Hayes, H.L. Lukas, G. Effenberg, and G. Petzow, Z. Metallkde. 77, 749 (1986).

    CAS  Google Scholar 

  4. O.J. Kleppa, Acta Metall. 3, 255 (1955).

    Article  CAS  Google Scholar 

  5. R. Castanet, Y. Claire, and M. Laffitte, J. Chim. Phys. 67, 789 (1970).

    CAS  Google Scholar 

  6. T. Nozaki, M. Shimoji, and K. Niwa, Trans. JIM 7, 52 (1966).

    Google Scholar 

  7. R. Beja, C. R. Acad. Sci. 267C, 123 (1968).

    Google Scholar 

  8. C.B. Alcock, Acta Metall. 21, 1003 (1973).

    Article  CAS  Google Scholar 

  9. G. Qi, Mater. Trans. JIM 30, 75 (1989).

    Google Scholar 

  10. D. Jendrzejczyk and K. Fitzner, Thermochim. Acta 433, 61 (2005).

    Article  CAS  Google Scholar 

  11. T. Nozaki, Mater. Trans. JIM 7, 52 (1966).

    Google Scholar 

  12. O.J. Kleppa, J. Phys. Chem. 60, 846 (1956).

    Article  CAS  Google Scholar 

  13. D.B. Masson, Metall. Trans. A 4A, 991 (1973).

    Google Scholar 

  14. Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X.J. Liu, Y. Inohana, and K. Ishida, J. Electron. Mater. 30, 1120 (2001).

    Article  CAS  Google Scholar 

  15. F. Weibke, A. Anorg. Chem. 222, 145 (1935).

    Article  CAS  Google Scholar 

  16. A.N. Campbell, Can. J. Chem. 48, 1703 (1970).

    Article  CAS  Google Scholar 

  17. W. Hume-Rothery, Phil. Trans. R. Soc. Lond. Ser. A 233, 1 (1936).

    Article  Google Scholar 

  18. E.A. Owen, Phil. Mag. 27, 294 (1939).

    CAS  Google Scholar 

  19. M.E. Staumanis, Trans. Metall. Soc. Lond. AIME 233, 964 (1965).

    Google Scholar 

  20. F. Witting and E. Gehring, Z. Naturforsch. A18, 351 (1963).

    Google Scholar 

  21. G. Laurie, A. Morrison, and J. Pratt, Trans. AIME 236, 1390 (1966).

    CAS  Google Scholar 

  22. K. Itagaki and A. Yazawa, J. Jpn. Inst. Met. 32, 1294 (1968).

    CAS  Google Scholar 

  23. R. Castanet, Y. Claire, and M. Laffitte, J. Phys. Chem. 66, 1276 (1969).

    CAS  Google Scholar 

  24. R. Rakotomavo, M. Guane-Escard, J.P. Bros, and P. Guane, Ber. Bunsen-Ges. Phys. Chem. 88, 663 (1984).

    CAS  Google Scholar 

  25. T. Nozaki, M. Shimoji, and K. Niwa, Ber. Bunsen-Ges. Phys. Chem. 70, 207 (1966).

    CAS  Google Scholar 

  26. K. Okajima and H. Sako, Mater. Trans. JIM 15, 51 (1974).

    CAS  Google Scholar 

  27. R.O. Frantik and H.J. McDonald, Trans. Electrochem. Soc. 88, 253 (1945).

    Article  Google Scholar 

  28. J.A. Yanko, A.E. Drake, and F. Hovorka, Trans. Electron. Soc. 89, 357 (1964).

    Article  Google Scholar 

  29. G.R.B. Elliot and J.F. Lemons, J. Electron. Soc. 114, 935 (1967).

    Article  Google Scholar 

  30. P.J.R. Chowdhury and A. Gosh, Metall. Trans. 2, 2171 (1971).

    Article  CAS  Google Scholar 

  31. P. Kubashewski and C.B. Alcock, J. Chem. Thermodyn. 4, 171 (1972).

    Google Scholar 

  32. R. Fahri, G. Petot-Ervas, and C. Petot, Phys. Chem. Liq. 5, 171 (1974).

    Google Scholar 

  33. S. Seetharaman and L.I. Staffansson, Chem. Scripta 10, 61 (1976).

    CAS  Google Scholar 

  34. M. Iwase, M. Yasuda, S. Miki, and T. Mori, Trans. JIM 19, 654 (1978).

    CAS  Google Scholar 

  35. K. Kameda, Y. Yoshida, and S. Sakairi, J. Jpn. Inst. Met. 44, 858 (1980).

    CAS  Google Scholar 

  36. T. Yamayi and E. Kato, Metall. Trans. 3, 1002 (1972).

    Article  Google Scholar 

  37. P.C. Wallbrecht, R. Blachnik, and K.C. Mills, Thermochim. Acta 46, 167 (1981).

    Article  CAS  Google Scholar 

  38. C.T. Heycock and F.H. Neville, Phil. Trans. R. Soc. Lond. Ser. A 189, 25 (1897).

    Article  Google Scholar 

  39. A.J. Murphy, J. Inst. Chem. 35, 107 (1926).

    Google Scholar 

  40. G.J. Petrenko, Z. Anorg. Chem. 53, 200 (1907).

    Article  Google Scholar 

  41. W. Hume-Rothery and P.W. Reynolds, Proc. R. Soc. Lond. Ser. A 160, 282 (1937).

    Article  CAS  Google Scholar 

  42. M.M. Umansky, Z. Fiz. Khim. 14, 846 (1940).

    Google Scholar 

  43. O.J. KLeppa, J. Phys. Chem. 60, 852 (1956).

    Article  CAS  Google Scholar 

  44. R. Beja (Ph.D. thesis, Marsseile, 1969).

  45. T. Azakami and A. Yazawa, J. Min. Metall. Inst. Jpn. 85, 97 (1969).

    Google Scholar 

  46. K. Itagaki and K. Yazawa, J. Jpn. Inst. Met. 35, 383 (1971).

    CAS  Google Scholar 

  47. T. Kang, H.V. Kehiaian, and R. Castanet, J. Calorim. Anal. Therm. 7, 371 (1976).

    Google Scholar 

  48. T. Kang, H.V. Kehiaian, and R. Castanet, J. Less-Common Met. 53, 153 (1977).

    Article  CAS  Google Scholar 

  49. K.P. Jagannathan and A. Gosh, Trans. Ind. Inst. Met. 27, 298 (1974).

    CAS  Google Scholar 

  50. K.T. Jacob and C.B. Alcock, Acta Metall. 21, 1011 (1973).

    Article  CAS  Google Scholar 

  51. F. Weibke and H. Eggers, Z. Anorg. Allg. Chem. 220, 273 (1934).

    Article  CAS  Google Scholar 

  52. W. Hume-Rothery, G.V. Raynor, and H.K. Packer, J. Inst. Met. 66, 209 (1940).

    CAS  Google Scholar 

  53. J. Reynolds, W.A. Wissman, and W. Hume-Rothery, J. Inst. Met. 80, 637 (1951–52).

    Google Scholar 

  54. K.C. Jain, M. Ellner, and K. Schubert, Z. Metallkd. 63, 456 (1972).

    CAS  Google Scholar 

  55. E.A. Owen and D.P. Morris, J. Inst. Met. 73, 471 (1974).

    Google Scholar 

  56. R.O. Jones and E.A. Owen, J. Inst. Met. 82, 479 (1953–54).

  57. M.E. Straumanis and L.S. Yu, Acta Crystallogr. A 25, 676 (1969).

    Article  CAS  Google Scholar 

  58. P.C. Walbrecht, R. Blachnik, and K.C. Mills, Thermochim. Acta 48, 69 (1981).

    Article  Google Scholar 

  59. A.S. Koster, L.R. WolfG, and J. Visser, Acta Crystallogr. B 36, 3094 (1980).

    Article  Google Scholar 

  60. J.W.G.A. Vroljik and L.R. Wolf, J. Cryst. Growth. 48, 85 (1980).

    Article  Google Scholar 

  61. O.J. Kleppa, J. Phys. Chem. 60, 852 (1956).

    Article  CAS  Google Scholar 

  62. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K. Kelly, Selected Values of the Thermodynamic Properties of Binary Alloys (Material Park, Ohio: American Society for Metals, 1973).

    Google Scholar 

  63. S. Takeuci, O. Uemura, and S. Ikeda, Sci. Rep. Tohoku Imp. Univ. 25A, 41 (1974).

    Google Scholar 

  64. A. Yazawa and K. Itagaki, Trans. JIM 16, 679 (1975).

    Google Scholar 

  65. Y. Iguchi, H. Shimoji, S. Ban-Ya, and T. Fuwa, Tetsu-to-Hagané 63, 349 (1977).

  66. M.J. Pool, B. Predel, and E. Schultheiss, Thermochim. Acta 28, 349 (1979).

    Article  CAS  Google Scholar 

  67. J.J. Lee, B.J. Kim, and W.S. Min, J. Alloy. Compd. 202, 237 (1993).

    Article  CAS  Google Scholar 

  68. C.B. Alcock, R. Sridhar, and R.C. Svedberg, Acta Metall. 17, 839 (1969).

    Article  CAS  Google Scholar 

  69. J.P. Hager, S.M. Howard, and J.H. Jones, Metall. Trans. 1, 415 (1970).

    Article  CAS  Google Scholar 

  70. K. Ono, S. Nishi, and T. Oishi, Trans. JIM 25, 810 (1984).

    CAS  Google Scholar 

  71. T. Oshi, T. Hiruma, and J. Moriyama, J. Jpn. Inst. Met. 36, 481 (1972).

    Google Scholar 

  72. A.K. Sengupta, K.P. Jagganathan, and A. Gosi, Metall Trans. 9B, 141 (1978).

    CAS  Google Scholar 

  73. C.B. Alcock and K.T. Jacob, Acta Metall. 22, 539 (1974).

    Article  CAS  Google Scholar 

  74. F. Sommer, W. Balbach, and B. Predel, Thermochim. Acta 33, 119 (1979).

    Article  CAS  Google Scholar 

  75. B. Predel and U. Schallner, Mater. Sci. Eng. 10, 249 (1972).

    Article  CAS  Google Scholar 

  76. M. Hamasumi and N. Takamoto, Nippon Kinzoku Gakkaishi 1, 251 (1937).

    Article  Google Scholar 

  77. M. Hamasumi, Nippon Kinzoku Gakkaishi 2, 147 (1938).

    Article  Google Scholar 

  78. C.T. Heycock and F.H. Neville, Phil. Trans. Roy. Soc. 189A, 47, 62 (1897).

    Google Scholar 

  79. O. Bauer and O. Vollenbruck, Z. Metallkd. 15, 119, 191 (1923).

  80. D. Stockdale, J. Inst. Met. 34, 111 (1925).

    Google Scholar 

  81. A.R. Raper, J. Inst. Met. 38, 217 (1927).

    Google Scholar 

  82. J. Vero, Z. Anorg. Chem. 218, 402 (1934).

    Article  CAS  Google Scholar 

  83. C. Haase and F. Pawlek, Z. Metallkde. 28, 73 (1936).

    CAS  Google Scholar 

  84. B.D. Bastow and D.H. Kirwood, J. Inst. Met. 99, 277 (1971).

    CAS  Google Scholar 

  85. B.-J. Lee, C.-S. Oh, and J.-H. Shim, J. Electron. Mater. 25, 983 (1996).

    Article  CAS  Google Scholar 

  86. N. Moelans, K.C. Hari Kumar, and P. Wollants, J. Alloy. Compd. 360, 98 (2003).

    Article  CAS  Google Scholar 

  87. B. Gather, P. Schröter, and R. Blachnik, Z. Metallkde. 78, 280 (1987).

    CAS  Google Scholar 

  88. M. Alaoui-Elbelghiti (Ph.D. Thesis, Rabat, Morocco, 1998).

  89. C. Luef, H. Flandorfer, and H. Ipser, Metall. Mater. Trans. A 36, 1273 (2005).

    Article  Google Scholar 

  90. T. Miki, N. Ogawa, T. Nagasaka, and M. Hino, Mater. Trans. 42, 732 (2001).

    Article  CAS  Google Scholar 

  91. L. Bencze and A. Popovic, Int. J. Mass. Spectrom. 270, 139 (2008).

    Article  CAS  Google Scholar 

  92. D. Jendrzejczyk, W. Gierlotka, and K. Fitzner, J. Chem. Therm. 41, 250 (2009).

    Article  CAS  Google Scholar 

  93. Z.J. Liu, Y. Inohana, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, Z. Moser, W. Gasior, and J. Pstrus, J. Electron. Mater. 31, 1139 (2002).

    Article  CAS  Google Scholar 

  94. C. Luef, H. Flandorfer, and H. Ipser, Z. Metallkd. 93, 151 (2004).

    Google Scholar 

  95. M. Kopyto, B. Onderka, and L.A. Zabdyr, Mater. Chem. Phys. 122, 480 (2010).

    Article  CAS  Google Scholar 

  96. E. Gebhardt and G. Petzow, Z. Metallkde. 50, 597 (1959).

    CAS  Google Scholar 

  97. S.S. Shen (Ph.D. Thesis, University of Denver, 1969).

  98. S.S. Shen, P.J. Spencer, and M.J. Pool, Trans. AIME 245, 603 (1969).

    CAS  Google Scholar 

  99. V.N. Fedotov, O.E. Osinchev, and E.T. Yushkina, Fazovye Ravnovesiya Met. Splavakh, ed. N.V. Ageev and L.A. Petrova (1981), p. 42.

  100. V.N. Fedotov, O.E. Osinchev, and E.T. Yushkina, Phase Diagrams of Metallic Systems, Vol. 26, ed. N.V. Ageev and L.A. Petrova (1982), p. 149.

  101. C.M. Miller, I.E. Anderson, and J.K. Smith, J. Electron. Mater. 23, 595 (1994).

    Article  CAS  Google Scholar 

  102. S. Chada, W. Laub, R.A. Fournelle, and D. Shangguan, J. Electron. Mater. 26, 11 (1999).

    Google Scholar 

  103. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, and C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  Google Scholar 

  104. M.E. Loomans and M.E. Fine, Metall. Mater. Trans. A 31, 1152 (2000).

    Article  Google Scholar 

  105. Y-w Yen and S-w Chen, J. Mater. Res. 19, 2298 (2004).

    Article  CAS  Google Scholar 

  106. A. Wierzbicka-Miernik, Inż. Materialowa 28, 889 (2007).

    Google Scholar 

  107. E. Gebhardt and M. Dreher, Z. Metallkd. 42, 230 (1951).

    CAS  Google Scholar 

  108. E. Gebhardt and M. Dreher, Z. Metallkd. 43, 357 (1952).

    CAS  Google Scholar 

  109. C.G. Woychik and T.B. Massalski, Metall. Trans. A19, 13 (1988).

    Google Scholar 

  110. Z. Bahari, M. Elgadi, J. Rivat, and J. Dugue, J. Alloy. Compd. 477, 152 (2009).

    Article  CAS  Google Scholar 

  111. K. Fitzner, Arch. Met. 29, 109 (1984).

    CAS  Google Scholar 

  112. D. Jendrzejczyk–Handzlik, W. Gierlotka, and K. Fitzner, J. Chem. Thermodyn. 41, 250 (2009).

    Article  CAS  Google Scholar 

  113. A. Popovic and L. Bencze, Int. J. Mass Spectrom. 257, 41 (2006).

    Article  CAS  Google Scholar 

  114. Z. Li, S. Knott, Z. Qiao, and A. Mikula, Mater. Trans. 47, 2025 (2006).

    Article  CAS  Google Scholar 

  115. X.J. Liu, H.S. Liu, I. Ohnuma, R. Kainuma, K. Ishida, S. Itabashi, K. Kameda, and K. Yamaguchi, J. Electron. Mater. 30, 1093 (2001).

    Article  CAS  Google Scholar 

  116. S.-k. Lin, T.-y. Chung, S.-w. Chen, and C.-h. Chang, J. Mater. Res. 24, 2628 (2009).

    Article  CAS  Google Scholar 

  117. J. Sopousek, M. Palcut, E. Hudolova, and J. Janovec, J. Electron. Mater. 39, 312 (2010).

    Article  CAS  Google Scholar 

  118. PURE 4.4 SGTE Pure Elements (Unary) Database, Scientific Group Thermodata Europe 1991–2006.

  119. E.A. Guggenheim, Mixtures (Oxford: Clarendon, 1952).

    Google Scholar 

  120. L. Hans, B. Sundman, and F. Suzana, Computational Thermodynamics: CALPHAD Method (Cambridge: Cambridge University Press, 2007).

    Google Scholar 

  121. ThermoCalc v. S. Foundation Computational Thermodynamic, Stockholm, Sweden, 2008.

  122. R. Schmid-Fetzer, D. Andersson, P.Y. Chevalier, L. Eleno, O. Fabrichnaya, U.R. Kattner, B. Sundman, C. Wang, A. Watson, L. Zabdyr, and M. Zinkevich, Calphad 31, 38 (2007).

    Article  CAS  Google Scholar 

  123. Pandat, CompuTherm LLC, 437 S. Yellowstone Dr. Suite 217 Madison, WI 53719 USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Gierlotka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gierlotka, W. Thermodynamic Description of the Quaternary Ag-Cu-In-Sn System. J. Electron. Mater. 41, 86–108 (2012). https://doi.org/10.1007/s11664-011-1757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1757-z

Keywords

Navigation