Skip to main content
Log in

Improved Thermoelectric Properties of Al-Doped Higher Manganese Silicide Prepared by a Rapid Solidification Method

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polycrystalline higher manganese silicides (HMS) Mn(Al x Si1−x )1.80 (x = 0 to 0.009) were prepared by a rapid melt-spinning process combined with a spark plasma sintering method (MS-SPS). The phase composition, microstructure, and thermoelectric properties of the bulk samples were investigated. X-ray diffraction (XRD) patterns showed that all samples possessed the HMS structure, but minor amounts of the MnSi phase could be observed from the backscattered electron images. When the Al content did not exceed the solid solubility limit, the electrical conductivity of Al-doped HMS increased dramatically, and the thermal conductivity decreased, as a result of the enhancement of phonon scattering due to an increased number of defects. In addition, the maximum ZT value of 0.65 was obtained at 850 K for the sample with x = 0.0015, whereas further increase in the Al content (x > 0.0015) significantly deteriorated the thermoelectric properties, mainly because the Al content exceeded its solid solubility limit in HMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  2. C.B. Vining, Nature 423, 391 (2003).

    Article  CAS  Google Scholar 

  3. D.T. Morelli, Thermoelectric Materials—New Directions and Approaches, Vol. 478, ed. T.M. Tritt (Warrendale: Materials Research Society, 1997), p. 297.

  4. G.S. Nolas, J. Poon, and M. Kanatzidis, MRS Bull. 31, 199 (2006).

    Article  CAS  Google Scholar 

  5. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).

    Article  Google Scholar 

  6. A.J. Zhou, X.B. Zhao, T.J. Zhu, Y.Q. Cao, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 38, 1072 (2009).

    Article  CAS  Google Scholar 

  7. Q. Zhang, J. He, X.B. Zhao, S.N. Zhang, T.J. Zhu, H. Yin, and T.M. Tritt, J. Phys. D 41, 185103 (2008).

    Article  Google Scholar 

  8. M. Fedorov, V. Zaitsev, F. Solomkin, and M. Vedernikov, Tech. Phys. Lett. 23, 602 (1997).

    Article  Google Scholar 

  9. M.I. Fedorov and V.K. Zaitsev, Thermoelectrics Handbook (Boca Raton: CRC, 2006).

    Google Scholar 

  10. A. Zhou, X. Zhao, T. Zhu, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, Intermetallics 18, 2051 (2010).

    Article  CAS  Google Scholar 

  11. A. Zhou, X. Zhao, T. Zhu, S. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, Mater. Chem. Phys. 124, 1001 (2010).

    Article  CAS  Google Scholar 

  12. H. Ye and S. Amelinckx, J. Solid State Chem. 61, 8 (1986).

    Article  CAS  Google Scholar 

  13. J.M. Higgins, A.L. Schmitt, I.A. Guzei, and S. Jin, J. Am. Chem. Soc. 130, 16086 (2008).

    Article  CAS  Google Scholar 

  14. U. Gottlieb, A. Sulpice, B. Lambert-Andron, and O. Laborde, J. Alloys Compd. 361, 13 (2003).

    Article  CAS  Google Scholar 

  15. O. Schwomma, A. Preisinger, H. Nowotny, and A. Wittmann, Chem. Month 95, 1527 (1964).

    Article  CAS  Google Scholar 

  16. H. Knott, M. Mueller, and L. Heaton, Acta Crystallogr. 23, 549 (1967).

    Article  CAS  Google Scholar 

  17. G. Zwilling and H. Nowotny, Monat. Chem. 104, 668 (1973).

    Article  CAS  Google Scholar 

  18. I. Nishida, K. Masumoto, I. Kawasumi, and M. Sakata, J. Less-Common Met. 71, 293 (1980).

    Article  CAS  Google Scholar 

  19. I. Kawasumi, M. Sakata, I. Nishida, and K. Masumoto, J. Mater. Sci. 16, 355 (1981).

    Article  CAS  Google Scholar 

  20. T. Kojima, I. Nishida, and T. Sakata, J. Cryst. Growth 47, 589 (1979).

    Article  CAS  Google Scholar 

  21. I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 8562 (2005).

    Article  CAS  Google Scholar 

  22. I. Aoyama, H. Kaibe, L. Rauscher, T. Kanda, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 4275 (2005).

    Article  CAS  Google Scholar 

  23. A.J. Zhou, T.J. Zhu, H.L. Ni, Q. Zhang, and X.B. Zhao, J. Alloys Compd. 455, 255 (2008).

    Article  CAS  Google Scholar 

  24. E. Groß, M. Riffel, and U. Stöhrer, J. Mater. Res. 10, 34 (1995).

    Article  Google Scholar 

  25. T. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams (Ohio: ASM International, 1990).

    Google Scholar 

  26. D.B. Migas, V.L. Shaposhnikov, A.B. Filonov, V.E. Borisenko, and N.N. Dorozhkin, Phys. Rev. B 77, 075205 (2008).

    Article  Google Scholar 

  27. Y. Miyazaki, D. Igarashi, K. Hayashi, T. Kajitani, and K. Yubuta, Phys. Rev. B 78, 214104 (2008).

    Article  Google Scholar 

  28. A. Zhou, T. Zhu, X. Zhao, S. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 39, 2002 (2009).

    Article  Google Scholar 

  29. H. Goldsmid, Electronic Refrigeration (London: Pion, 1986), pp. 29–63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfeng Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, W., Li, H., Fu, F. et al. Improved Thermoelectric Properties of Al-Doped Higher Manganese Silicide Prepared by a Rapid Solidification Method. J. Electron. Mater. 40, 1233–1237 (2011). https://doi.org/10.1007/s11664-011-1612-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1612-2

Keywords

Navigation