Skip to main content
Log in

Impact Behavior of Thermomechanically Fatigued Sn-Based Solder Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Impact behavior of Sn-3 wt.%Ag-0.5 wt.%Cu (SAC 305) solder joints subjected to thermomechanical fatigue in different temperature regimes was investigated. This study was aimed at understanding the roles of distributed cracks that develop near the solder/substrate interface region during early stages of thermal excursions. Two specimen geometries were employed to evaluate mode I and mode II types of fracture under impact in solder joints several hundred microns thick. The peak stress that could be withstood in mode I fracture under impact decreased with increasing number of thermomechanical fatigue cycles, while mode II fracture was insensitive to the same. No observable influence on the impact strength due to the temperature regimes was noted. However, the fracture surfaces of specimens subjected to thermal excursions at the lower-temperature regime were predominantly along the Cu6Sn5/solder interface, while specimens subjected to the higher-temperature regime predominantly fractured along the Sn-Sn grain boundaries. These observations are consistent with the findings of prior studies dealing with damage accumulation in the early stages of thermal excursions in these temperature regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E.H. Wong, S.K.W. Seah, and V.P.W. Shim, Microelectron. Reliab. 48, 1747 (2008).

    Article  CAS  Google Scholar 

  2. M. Tanaka, T. Sasaki, T. Kobayashi, and K. Tatsumi, 56th Electronic Components and Technology Conference Proceedings (2006), p. 7.

  3. P. Ratchev, B. Vandevelde, B. Verlinden, B. Allaert, and D. Werkhoven, IEEE Trans. Comp. Packag. Technol. 30, 416 (2007).

    Article  CAS  Google Scholar 

  4. H. Shimokawa, T. Soga, and K. Serizawa, Mater. Trans. 43, 1808 (2002).

    Article  CAS  Google Scholar 

  5. Y.S. Lai, J.M. Song, H.C. Chang, and Y.T. Chiu, J. Electron. Mater. 37, 201 (2008).

    Article  CAS  ADS  Google Scholar 

  6. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K.N. Tu, Scr. Mater. 51, 641 (2004).

    Article  CAS  Google Scholar 

  7. T. You, Y. Kim, J. Kim, J. Lee, B. Jung, J. Moon, and H. Choe, J. Electron. Mater. 38, 410 (2009).

    Article  CAS  ADS  Google Scholar 

  8. K.T. Tsai, F.L. Liu, E.H. Wong, and R. Rajoo, Solder. Surf. Mt. Technol. 18, 12 (2006).

    Article  CAS  Google Scholar 

  9. S. Fubin, S.W.R. Lee, K. Newman, B. Sykes, and S. Clark, 57th Electronic Components and Technology Conference Proceedings (2007), p. 364.

  10. T.T. Mattila and J.K. Kivilahti, J. Electron. Mater. 34, 969 (2005).

    Article  CAS  ADS  Google Scholar 

  11. E.H. Wong, Y.W. Mai, and S.K.W. Seah, J. Electron. Packag. 127, 496 (2005).

    Article  Google Scholar 

  12. Y.S. Lai, P.F. Yang, and C.L. Yeh, Microelectron. Reliab. 46, 645 (2006).

    Article  CAS  Google Scholar 

  13. L.H. Xu, J.H.L. Pang, and F.X. Che, J. Electron. Mater. 37, 880 (2008).

    Article  CAS  ADS  Google Scholar 

  14. W.P. Liu and N.C. Lee, J. Met. 59, 26 (2007).

    CAS  Google Scholar 

  15. J.W. Jang, A.P. De Silva, J.E. Drye, S.L. Post, N.L. Owens, J.K. Lin, and D.R. Frear, IEEE Trans. Electron. Packag. Manuf. 30, 49 (2007).

    Article  CAS  Google Scholar 

  16. JESD22-B111, Board level drop test method of components for handheld electronic product, JEDEC Solid State Technology Association, July 2003.

  17. J.G. Lee, F. Guo, S. Choi, K.N. Subramanian, T.R. Bieler, and J.P. Lucas, J. Electron. Mater. 31, 946 (2002).

    Article  CAS  ADS  Google Scholar 

  18. S. Choi, J.G. Lee, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Electron. Mater. 31, 292 (2002).

    Article  CAS  ADS  Google Scholar 

  19. J.G. Lee and K.N. Subramanian, J. Electron. Mater. 32, 523 (2003).

    Article  CAS  ADS  Google Scholar 

  20. K.N. Subramanian, J. Mater. Sci.: Mater. Electron. 18, 237 (2007).

    Article  CAS  Google Scholar 

  21. K.N. Subramanian and J.G. Lee, Mater. Sci. Eng. A 412, 46 (2006).

    Google Scholar 

  22. D. Choudhuri, K.N. Subramanian, and A. Lee, manuscript in preparation.

  23. S. Choi, K.N. Subramanian, J.P. Lucas, and T.R. Bieler, J. Electron. Mater. 29, 1249 (2000).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Nippon Steel Corporation for the financial support facilitating Mr. Kobayashi’s stay at Michigan State University and the project. They also thank Drs. D. Liu and G. Li of the Mechanical Engineering Department at Michigan State University for the use of the impact facility and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T., Lee, A. & Subramanian, K.N. Impact Behavior of Thermomechanically Fatigued Sn-Based Solder Joints. J. Electron. Mater. 38, 2659–2667 (2009). https://doi.org/10.1007/s11664-009-0890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-009-0890-4

Keywords

Navigation