Skip to main content
Log in

Density measurement of Sn-40Pb, Sn-57Bi, and Sn-9Zn by indirect Archimedean method

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

By the indirect Archimedean method, the density and the density-temperature relationship of the Sn-40Pb eutectic alloy and two Pb-free solders, Sn-57Bi and Sn-9Zn eutectic alloys, were measured from room temperature to about 250°C. The results showed that the density-temperature dependence for each alloy in both solid and melting states can be fitted linearly as ρS(Sn-40Pb)=8.51−8.94×10−4(T−25°C), ρL(Sn-40Pb)=8.15−13.8×10−4(T−Tm); ρS(Sn-57Bi)=8.54−5.86 × 10−4(T−25°C), ρL(Sn-57Bi)=8.51−10.9×10−4(T−Tm); and ρs(Sn-9Zn)=7.22−7.78×10−4(T−25°C), ρL(Sn-9Zn)=6.89−5.88×10 −4(T−Tm), where the density unit was g/cm3. At the melting point, density of the melt of these solders is 8.15 g/cm3, 8.51 g/cm3, and 6.89 g/cm3, respectively. The density decreased 2.6% for Sn-40Pb eutectic alloy during melting, and 2.7% for Sn-9Zn eutectic alloy, but increased 0.5% for Sn-57Bi eutectic alloy. The excess molar volume for these alloys after mixing at their melting point is 0.03 cm3/mol for Sn-40Pb, 0.09 cm3/mol for Sn-57Bi, and 0.21 cm3/mol for Sn-9Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Glazer, Int. Mater. Rev. 40, 65 (1995).

    CAS  Google Scholar 

  2. K. Zeng and K.N. Tu, Mater. Sci. Eng. R 38, 55 (2002).

    Article  Google Scholar 

  3. K. Suganuma, M. Ueshima, I. Ohnaka, H. Yasuda, J. Zhu, and T. Matsuda, Acta Mater. 48, 4475 (2000).

    Article  CAS  Google Scholar 

  4. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001).

    Article  CAS  Google Scholar 

  5. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R27, 95 (2000).

    CAS  Google Scholar 

  6. Z. Moser, W. Gasior, J. Pstrus, and S. Ksiezarek, J. Elect. Mater. 31, 1225 (2002).

    CAS  Google Scholar 

  7. Z. Moser, W. Gasior, and J. Pstrus, J. Elect. Mater. 30, 1104 (2001).

    CAS  Google Scholar 

  8. T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, 2nd ed. (Oxford, United Kingdom: Clarendon, 1993), pp. 47–58.

    Google Scholar 

  9. R.C. Weast, D.R. Lide, and M.I. Astle, CRC Handbook of Chemistry and Physics, 79th ed., ed. W.H. Beyer (Boca Raton, FL: Chemical Rubber Company Press, 1999), pp. 12–192.

    Google Scholar 

  10. L.W. Wang, Q. Wang, A.P. Xian, and K.Q. Lu, J. Phys.: Cond. Matter 15, 777 (2003).

    Article  CAS  Google Scholar 

  11. H.R. Thresh, A.F. Crawley, and D.W.G. White, Trans. Am. Soc. AIME 242, 819 (1968).

    CAS  Google Scholar 

  12. E. Gebhardt and K. Kostlin, Z. Metallkd. 48, 636 (1957).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Xian, AP. Density measurement of Sn-40Pb, Sn-57Bi, and Sn-9Zn by indirect Archimedean method. J. Electron. Mater. 34, 1414–1419 (2005). https://doi.org/10.1007/s11664-005-0199-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0199-x

Key words

Navigation