Skip to main content
Log in

Pad effects on material-removal rate in chemical-mechanical planarization

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The role of a porous pad in controlling material-removal rate (MRR) during the chemical-mechanical planarization (CMP) process has been studied numerically. The numerical results are used to develop a phenomenological model that correlates the forces on each individual abrasive particle to the applied nominal pressure. The model provides a physical explanation for the experimentally observed domains of pressure-dependent MRR, where the pad deformation controls the load sharing between active-abrasive particles and direct pad-wafer contact. The predicted correlations between MRR and slurry characteristics, i.e., particle size and concentration, are in agreement with experimentally measured trends reported by Ouma1 and Izumitani.2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.O. Ouma (Ph.D. thesis, Massachusetts Institute of Technology, 1998).

  2. T. Izumitani, Treatise Mater. Sci. Technol. 17, 115 (1979).

    CAS  Google Scholar 

  3. J.M. Steigerwald, S.P. Murarka, and R.J. Gutmann. Chemical Mechanical Planarization of Microelectronic Materials (New York: John Wiley & Sons, Inc., 1997).

    Google Scholar 

  4. C.W. Kaanta et al., Proc. VMIC Conf. (1991), p. 144.

  5. H. Kranenberg and P.H. Woerlee, J. Electrochem. Soc. 145, 1285 (1998).

    Article  Google Scholar 

  6. M. Jiang, N. Wood, and R. Komanduri, J. Eng. Mater. Technol. 120, 304 (1998).

    CAS  Google Scholar 

  7. F.W. Preston, J. Soc. Glass Technol. 11, 214 (1927).

    CAS  Google Scholar 

  8. D. Wang, J. Lee, K. Holland, T. Bibby, S. Beaudoin, and T. Cale, J. Electrochem. Soc. 144, 1121 (1997).

    Article  CAS  Google Scholar 

  9. W.T. Tseng, J.H. Chin, and L.C. Kang, J. Electrochem. Soc. 146, 1952 (1999).

    Article  CAS  Google Scholar 

  10. B. Zhao and F.G. Shi, Int. J. CMP 1, 13 (2000).

    Google Scholar 

  11. J. Luo and D.A. Dornfeld, IEEE Trans. Semicond. Manuf. 14, 112 (2001).

    Article  Google Scholar 

  12. G. Fu, A. Chandra, S. Guha, and G. Subhash, IEEE Trans. Semicond. Manuf. 14, 406 (2001).

    Article  Google Scholar 

  13. L.J. Gibson and M.F. Ashby, Cellular Solids, 2nd ed. (Cambridge, United Kingdom: Cambridge University Press, 1997).

    Google Scholar 

  14. The nanoindentation test was carried out by MTS, Inc.

  15. G. Fu and A. Chandra, submitted to J. Electron. Mater.

  16. ABAQUS, User Manual, Ver. 6.1, 2001, Pawtucket, RI.

  17. A.-F. Bastawros, H. Bart-Smith, and A.G. Evans, J. Mech. Phys. Solids 48, 301 (2000).

    Article  CAS  Google Scholar 

  18. Y. Ye, R. Biswas, J. Morris, A.-F. Bastawros, and A. Chandra, Chemical-Mechanical Planarization, ed. S.V. Babu, R. Singh, N. Hayasaka, and M. Oliver, MRS Proc. 732E (Pittsburgh, PA: Materials Research Society, 2002), pp. I4.8.1-6.

    Google Scholar 

  19. W. Che, Y. Guo, A. Bastawros, and A. Chandra, Chemical-Mechanical Planarization, ed. S.V. Babu, R. Singh, N. Hayasaka, and M. Oliver, MRS Proc. 732E (Pittsburgh, PA: Materials Research Society, 2002), pp. I4.3.1-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastawros, A., Chandra, A., Guo, Y. et al. Pad effects on material-removal rate in chemical-mechanical planarization. J. Electron. Mater. 31, 1022–1031 (2002). https://doi.org/10.1007/s11664-002-0038-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-002-0038-2

Key words

Navigation