Skip to main content

Advertisement

Log in

Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures

  • Topical Collection: Physical and Numerical Simulations of Materials Processing
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The hot ductility tests of a kind of 980 MPa class Fe-0.31C (wt pct) TRIP steel (TRIP980) with the addition of Ti/V/Nb were conducted on a Gleeble-3500 thermomechanical simulator in the temperatures ranging from 873 K to 1573 K (600 °C to 1300 °C) at a constant strain rate of 0.001 s−1. It is found that the hot ductility trough ranges from 873 K to 1123 K (600 °C to 850 °C). The recommended straightening temperatures are from 1173 K to 1523 K (900 °C to 1250 °C). The isothermal hot compression deformation behavior was also studied by means of Gleeble-3500 in the temperatures ranging from 1173 K to 1373 K (900 °C to 1100 °C) at strain rates ranging from 0.01 s−1 to 10 s−1. The results show that the peak stress decreases with the increasing temperature and the decreasing strain rate. The deformation activation energy of the test steel is 436.7 kJ/mol. The hot deformation equation of the steel has been established, and the processing maps have been developed on the basis of experimental data and the principle of dynamic materials model (DMM). By analyzing the processing maps of strains of 0.5, 0.7, and 0.9, it is found that dynamic recrystallization occurs in the peak power dissipation efficiency domain, which is the optimal area of hot working. Finally, the factors influencing hot ductility and thermal activation energy of the test steel were investigated by means of microscopic analysis. It indicates that the additional microalloying elements play important roles both in the loss of hot ductility and in the enormous increase of deformation activation energy for the TRIP980 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Y.M. Won, K. Kim and T. Yeo: ISIJ Int., 1998, vol. 38, pp. 1093-99.

    Article  Google Scholar 

  2. Y. Ohmori and Y. Maehara: Trans. Jpn. Met., 1984, vol. 25, pp. 160-67.

    Article  Google Scholar 

  3. S.H. Song, A.M. Guo, D.D. Shen, Z.X. Yuan, J. Liu and T.D. Xu: Metall. Mater. Trans. A, 2003, vol. 360, pp. 96-100.

    Google Scholar 

  4. R. Abu-Shosha, R.R. Vippond and B. Mintz: Mater. Sci. Technol.,1991, vol. 7, pp. 1101-07.

    Article  Google Scholar 

  5. H. Matsuoka, K. Osawa, M. Ono and M. Ohmura: ISIJ Int., 1997, vol. 37, pp. 255-62.

    Article  Google Scholar 

  6. C. Nagasaki and J. Kihara:.ISIJ Int,, 1997, vol. 37, pp. 523-30.

  7. B. Mintz, and D.N. Crowther: Int. Mater. Rev., 2010, vol. 55, pp. 168-96.

    Article  Google Scholar 

  8. K.C. Cho, D.J. Mun, Y.M. Koo, and J.S. Lee: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3556-61.

    Article  Google Scholar 

  9. E. Schmidtmann and F. Rakoski: Archiv Eisenhüttenwesen, 1983, vol. 15, pp. 357-62.

    Article  Google Scholar 

  10. K. Banks, A. Koursaris, F. Verdoon, and A. Tuling: Mater. Sci. Technol., 2001, vol. 17, pp. 1596-604.

    Article  Google Scholar 

  11. T. Brune, D. Senk, G.A. Toledo, J. Komenda, K. Frisk, and A. Smith: Proceedings of the 1st ESTAD & 31st JSI Conference, Paris, 2014, pp. 185–87.

  12. T. Brune, F. Haberl, and D. Senk: Proceedings of the 8th ECCC Conference, Graz, 2014, pp. 719–28.

  13. T. Brune, D. Senk, and B. Steenken: Proceedings of the 2nd International Conference High Manganese Steel, Aachen, 2014, pp. 135–38.

  14. T. Brune, D. Senk, R. Walpot, and B. Steenken: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1401-08.

    Google Scholar 

  15. S. Großeiber, S. Ilie, C. Poletti, B. Harrer, and H.P. Degischer: Steel Res. Int., 2012, vol. 83, pp. 445-55.

    Article  Google Scholar 

  16. Z. Mohamed: Thesis, The City University, London, 1988.

  17. B. Mintz, S. Yue, and J.J. Jonas: Int. Mater. Rev., 1991, vol. 36, pp. 187-217.

    Article  Google Scholar 

  18. B. Mintz: ISIJ Int., 1999, vol. 39, pp. 833-55.

    Article  Google Scholar 

  19. B. Eghbali: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3402-06.

    Article  Google Scholar 

  20. Y.C. Lin and G. Liu: Mater. Sci. Eng. A, 2009, vol. 523, pp. 139-44.

    Article  Google Scholar 

  21. K.P. Rao, Y.V.R.K. Prasad and K. Suresh: Mater. Des., 2011, vol. 32, pp. 4874-81.

    Article  Google Scholar 

  22. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker: Metall. Mater. Trans. A, 1984, vol. 15, pp. 1883-92.

    Article  Google Scholar 

  23. Q. Ju and D.G. Li: Acta. Metall. Sinica, 2006, vol. 42, pp. 218-24.

    Google Scholar 

  24. M. Zhang, L. Li, R.Y. Fu, D. Krizan and B.C. De Cooman: Mater. Sci. Eng. A, 2006, vol. 438-440, pp. 296-99.

    Article  Google Scholar 

  25. D. Krizan: 45th MSS Conference Proceedings, Chicago, 2003, vol. XLI, pp. 437–48.

  26. J. Ohlert: International Conference on TRIP Aided High Strength Ferrous Alloys Proceedings, Ghent, 2002, p. 199.

  27. C. Scott: International Conference on Advanced High-Strength Sheet Steels for Automotive Applications Proceedings, Winter Park, 2004, pp. 181–93.

  28. C. Zener and J.H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22–32.

    Article  Google Scholar 

  29. J.L. Uvira and J.J. Jonas: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 1619-27.

    Google Scholar 

  30. S.F. Medina and C.A. Hernandez: Acta. Mater., 1996, vol. 44, pp. 137-48.

    Article  Google Scholar 

  31. E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127-36.

    Article  Google Scholar 

  32. J. J. Jonas, X. Quelennec, L. Jiang and É. Martin: Acta Mater., 2009, vol. 57, pp. 2748-56.

    Article  Google Scholar 

  33. R.H. Wu, H.T. Zhu, H.B. Zhang, J.T. Liu, Z.Y. Xu and X.Y. Ruan: J. SJTU., 2001, vol. 35, pp. 339-42.

    Google Scholar 

  34. Y.V.R.K. Prasad and T. Seshacharyulu: Int. Mater. Rev., 1997, vol. 43, pp. 243-58.

    Article  Google Scholar 

  35. S.L. Guo, D.F. Li, X.P. Wu, X.Q. Xu, P. Du and J. Hu: Mater. Des., 2012, vol. 41, pp. 158-66.

    Article  Google Scholar 

  36. S. Xiang, Z.L. Tan and Y.L. Liang: Trans. Mater. Heat Treat., 2013, vol. 34, pp. 243-47.

    Google Scholar 

  37. Y.V.R.K. Prasad: J. Mater. Eng. Perform., 2013, vol. 22, pp. 2867-74.

    Article  Google Scholar 

  38. X. Zhao, B. Gan, M. Zhang, Y. Zhong, M.L. Hou, and L. Li: AEMT., Guangzhou, 2015, pp. 855-59.

  39. M. Zhang, X. Zhao, Y. Zhu, C. B. Huang, Q. S. Li, Y. Zhong, and L. Li: Adv. Mater. Res., 2014, vol. 887-88, pp. 200-06.

    Google Scholar 

  40. F. Ehovnik, F. Vodopivec, L. Kosec, and M. Godec:MTAEC9., 2006, vol. 40, pp. 129-37.

  41. J. Komenda, D. Martin and J. Lönnqvist: Mater. Sci. Forum.,2017, vol. 879, pp. 990-99.

    Article  Google Scholar 

  42. C. Beal, O. Caliskanoglu, C. Sommitsch, S. Ilie, J. Six and M. Dománková: Mater. Sci. Forum., 2017, vol. 879, pp. 199-204.

    Article  Google Scholar 

  43. E.I. Poliak and J.J. Jonas: ISIJ Int., 2003, vol. 43, pp. 684-91.

    Article  Google Scholar 

  44. C. Sang-Hyun, K.B. Kang and J.J. Jonas: ISIJ Int., 2001, vol. 41, pp. 766-73.

    Article  Google Scholar 

  45. Z.H. Zhang, Y.N. Liu, X.K. Liang and Y. She: Mater. Sci. Eng. A, 2008, vol. 474, pp. 254-60.

    Article  Google Scholar 

  46. W.M. Zeng, K. Han, Z. Mei and L.I. Lin: Mater. Sci. Technol., 2011, vol. 19, pp. 132-36.

    Google Scholar 

  47. H. Zhao, G. Liu and L. Xu: Mater. Sci. Eng. A, 2013, vol. 559, pp. 262-67.

    Article  Google Scholar 

  48. L. Wang, F. Liu, J. J. Cheng, Q. Zuo and C. F. Chen: J. Alloy. Compd., 2015, vol. 623, pp. 69-78.

    Article  Google Scholar 

  49. A. Larrañaga-Otegui, B. Pereda, D. Jorge-Badiola and I. Gutiérrez: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3150-64.

    Article  Google Scholar 

  50. K. Frisk and U. Borggren: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4806-17.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the National Natural Sciences Foundation of China (Grant Nos. 50934011 and 50971137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Zhang.

Additional information

Manuscript submitted December 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, H., Gan, B. et al. Hot Ductility and Compression Deformation Behavior of TRIP980 at Elevated Temperatures. Metall Mater Trans B 49, 1–12 (2018). https://doi.org/10.1007/s11663-017-0974-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0974-0

Keywords

Navigation