Skip to main content
Log in

Large-Eddy Simulation of Transient Horizontal Gas–Liquid Flow in Continuous Casting Using Dynamic Subgrid-Scale Model

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Euler–Euler simulations of transient horizontal gas–liquid flow in a continuous-casting mold are presented. The predictions were compared with previous experimental measurements by two-channel laser Doppler velocimeter. Simulations were performed to understand the sensitivity to different turbulence closure models [kɛ, shear stress transport (SST), Reynolds stress model (RSM), and large-eddy simulation (LES)] and different interfacial forces (drag, lift, virtual mass, wall lubrication, and turbulent dispersion). It was found that the LES model showed better agreement than the other turbulence models in predicting the velocity components of the liquid phase. Furthermore, an appropriate drag force coefficient model, lift force coefficient model, and virtual mass force coefficient were chosen. Meanwhile, the wall lubrication force and turbulent dispersion force did not have much effect on the current gas–liquid two-phase system. This work highlights the importance of choosing an appropriate bubble size in accordance with experiment. Finally, coupled with the optimized interfacial force models and bubble size, LES with a dynamic subgrid model was used to calculate the transient two-phase turbulent flow inside the mold. More instantaneous details of the two-phase flow characteristics in the mold were captured by LES, including multiscale vortex structures, fluctuation characteristics, and the vorticity distribution. The LES model can also be used to describe the time-averaged gas–liquid flow field, giving reasonably good agreement with mean experimental data. Thus, LES can be used effectively to study transient two-phase flow inside molds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

C D :

Drag coefficient (dimensionless)

C L :

Lift force model constant (dimensionless)

C VM :

Virtual mass force model constant (dimensionless)

C S :

Smagorinsky constant (dimensionless)

C TD :

Turbulent dispersion model constant (dimensionless)

C WL :

Wall lubrication force model constant (dimensionless)

C μ,BI :

Sato and Sekiguchi model constant (dimensionless)

C ω1, C ω2 :

Wall lubrication constants (dimensionless)

d b :

Bubble diameter (m)

D T,ij :

Turbulent diffusion term of Reynolds stress model

Eo:

Eötvös number (dimensionless)

F 1, F 2 :

Blending functions (dimensionless)

Fr:

Froude number (dimensionless)

F k , F 1g, F gl :

Interfacial forces between the two phases (N/m3)

F D :

Drag force (N/m3)

F L :

Lift force (N/m3)

F VM :

Virtual mass force (N/m3)

F WL :

Wall lubrication force (N/m3)

F TD :

Turbulent dispersion force (N/m3)

g :

Gravity acceleration vector (m/s2)

G k :

Rate of production of turbulent kinetic energy (dimensionless)

k :

Turbulent kinetic energy (m2/s2)

\( \vec{n}_{\text{w}} \) :

Outward vector normal to the wall (dimensionless)

P :

Static pressure (N/m2)

P ij :

Stress production term of Reynolds stress model

P k :

Production rate of turbulence (dimensionless)

Q :

Volume flow rate (m3/s)

Re :

Reynolds number (dimensionless)

S :

Strain rate tensor (1/s)

t :

Physical time (s)

u :

Velocity (m/s)

We:

Weber number (dimensionless)

y ω :

Distance from the wall boundary (m)

α :

Volume fraction (dimensionless)

β :

Constant (dimensionless)

ρ :

Density (kg/m3)

ε :

Turbulent kinetic energy dissipation (m2/s3)

μ eff :

Effective viscosity (N s/m2)

μ L :

Molecular viscosity (N s/m2)

μ T :

Turbulent viscosity (N s/m2)

υ :

Kinematic viscosity (m2/s)

μ BI :

Bubble-induced turbulence viscosity (N s/m2)

σ :

Surface tension (N/m)

σ t,g :

Turbulent Schmidt number (dimensionless)

τ :

Stress (N/m2)

δ :

Kronecker factor (dimensionless)

ϕ ij :

Pressure strain term of Reynolds stress model

ψ ij :

Dissipation term of Reynolds stress model

ω :

Turbulent frequency (1/s)

ω′:

Angular speed of liquid rotation (rad/s)

Ω :

Vorticity (1/s)

:

Filter width (m)

b:

Bubble

g:

Gas phase

k :

Index of gas/liquid phase, or turbulent kinetic energy

l:

Liquid phase

References

  1. M. Iguchi and N. Kashi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 453–60.

    Article  Google Scholar 

  2. B.G. Thomas, L.J. Mika, and F.M. Najjar: Metall. Mater. Trans. B, 1990, vol. 21B, pp. 387–400.

    Article  Google Scholar 

  3. A. Ramos-Banderas, R.D. Morales, R. Sanchez-Perez, L. Garcia-Demedices, and G. Solorio-Diaz: Int. J. Multiphase Flow, 2005, vol. 31, pp. 643–65.

    Article  Google Scholar 

  4. Z.Q. Liu, F.S. Qi, B.K. Li, and S.C.P. Cheung: Int. J. Multiphase Flow, 2016, vol. 79, pp. 190–201.

    Article  Google Scholar 

  5. E. Krepper, D. Lucas, and H.M. Prasser: Nucl. Eng. Des., 2005, vol. 235, pp. 597–611.

    Article  Google Scholar 

  6. S.C.P. Cheung, G.H. Yeoh, and J.Y. Tu: Chem. Eng. Sci., 2007, vol. 62, pp. 4659–74.

    Article  Google Scholar 

  7. M.T. Dhotre, B. Niceno, and B.L. Smith: Chem. Eng. J., 2008, vol. 136, pp. 337–48.

    Article  Google Scholar 

  8. M.V. Tabib, S.A. Roy, and J.B. Joshi: Chem. Eng. J., 2008, vol. 139, pp. 589–614.

    Article  Google Scholar 

  9. N.G. Deen, T. Solberg, and B.H. Hjertager: Chem. Eng. Sci., 2001, vol. 56, pp. 6341–49.

    Article  Google Scholar 

  10. D.S. Zhang, N.G. Deen, and J.A.M. Kuipers: Ind. Eng. Chem. Res., 2009, vol. 48, pp. 47–57.

    Article  Google Scholar 

  11. B.G. Thomas, Q. Yuan, S. Mahmood, R. Liu, and R. Chaudhary: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 22–35.

    Article  Google Scholar 

  12. S.M. Lee, S.J. Kim, and H.G. Lee: J. Iron Steel Res. Int., 2011, vol. 18, pp. 220–26.

    Google Scholar 

  13. Y. Miki and S. Takeuchi: ISIJ Int., 2003, vol. 43, pp. 1548–55.

    Article  Google Scholar 

  14. Z.Q. Liu and B.K. Li: Powder Technol., 2016, vol. 287, pp. 315–29.

    Article  Google Scholar 

  15. Z.Q. Liu, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 675–97.

    Article  Google Scholar 

  16. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253–67.

    Article  Google Scholar 

  17. Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484–92.

    Article  Google Scholar 

  18. Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2014, vol. 54, pp. 1314–23.

    Article  Google Scholar 

  19. A. Ramos-Banderas, R. Sánchez-Perez, R.D. Morales, J. Palafox-ramos, L. Demedices-Garcia, and M. Diaz-cruz: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 449–60.

    Article  Google Scholar 

  20. Q. Yuan, S. Sivaramkrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967–82.

    Article  Google Scholar 

  21. Z.Q. Liu, F.S. Qi, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 933–52.

    Article  Google Scholar 

  22. H.A. Jakobsen, B.H. Sannaes, S. Grevskott, and H.F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4052–74.

    Article  Google Scholar 

  23. Y. Sato, M. Sadatomi, and K. Sekiguchi: Int. J. Multiphase Flow, 1975, vol. 2, pp. 79–87.

    Article  Google Scholar 

  24. F.R. Menter: AIAA J, 1994, vol. 32, pp. 1598–1605.

    Article  Google Scholar 

  25. J. Smagorinsky: Month. Weather Rev., 1963, vol. 91, pp. 99–165.

    Article  Google Scholar 

  26. D. Lakehal, B.L. Smith, and M. Milelli: J. Turb., 2002, vol. 3, pp. 1–20.

    Article  Google Scholar 

  27. M. Germano, U. Piomelli, P. Moin, and W.H. Cabot: Phys. Fluids A, 1991, vol. 3, pp. 1760–65.

    Article  Google Scholar 

  28. D.K. Lilly: Phys. Fluids A, 1992, vol. 4, pp. 633-35.

    Article  Google Scholar 

  29. D.A. Drew and R.T. Lahey: Int. J. Multiphase Flow, 1987, vol. 13, pp. 113–21.

    Article  Google Scholar 

  30. D.Z. Zhang and W.B. Vanderheyden: Int. J. Multiphase Flow, 2002, vol. 28, pp. 805–22.

    Article  Google Scholar 

  31. A. Tomiyma, H. Tamai, I. Zun, and S. Hosokawa: Chem. Eng. Sci., 2002, vol. 57, pp. 1949–58.

    Google Scholar 

  32. M. Ishii and N. Zuber: AIChE J, 1979, vol. 25, pp. 843-55.

    Article  Google Scholar 

  33. L.A. Schiller and Z. Naumaan: Ver Deutsch. Ing., 1935, vol. 77, 138 pp.

    Google Scholar 

  34. P. G. Saffman: J. Fluid Mech., 1965, vol. 22, pp. 385-400.

    Article  Google Scholar 

  35. R. Mei and J. F. Klausner: Int. J. Heat Fluid Flow, 1994, vol. 15, pp. 62–65.

    Article  Google Scholar 

  36. D. Legendre and J. Magnaudet: J. Fluid Mech., 1998, vol. 368, pp. 81–126.

    Article  Google Scholar 

  37. S.S. Thakre and J.B. Joshi: Chem. Eng. Sci., 1999, vol. 54, pp. 5055–60.

    Article  Google Scholar 

  38. A. Sokolichin and G. Eigenberger: AIChE J, 2004, vol. 50, pp. 24-45.

    Article  Google Scholar 

  39. S.P. Antal, R.T. Lahey, and J.E. Flaherty: Int. J. Multiphase Flow, 1991, vol. 7, pp. 635–52.

    Article  Google Scholar 

  40. T. Frank, P. Zwart, E. Krepper, H.M. Prasser, and D. Lucas: Nucl. Eng. Des., 2008, vol. 238, pp. 647–59.

    Article  Google Scholar 

  41. M. Lopez de Bertodano: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, 1991.

  42. A.D. Burns, T. Frank, I. Hamill, and J. Shi: Proceeding of the Fifth International Conference on Multiphase Flow, Yokohama, Japan. 2004.

  43. B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, and M.B. Assar: ISIJ Int., 2001, vol. 41, pp. 1262–71.

    Article  Google Scholar 

  44. K. Timmel, T. Wondrak, M. Roder, F. Stefani, S. Eckeert, and G. Gerbeth: Steel Res. Int., 2014, vol. 85, pp. 1283–90.

    Article  Google Scholar 

Download references

Acknowledgments

The work reported in this paper was funded by the National Natural Science Foundation of China (Grant No. 51604070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqiu Liu.

Additional information

Manuscript submitted November 16, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, B. Large-Eddy Simulation of Transient Horizontal Gas–Liquid Flow in Continuous Casting Using Dynamic Subgrid-Scale Model. Metall Mater Trans B 48, 1833–1849 (2017). https://doi.org/10.1007/s11663-017-0947-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0947-3

Keywords

Navigation