Skip to main content
Log in

Effect of Mg Addition on the Refinement and Homogenized Distribution of Inclusions in Steel with Different Al Contents

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To investigate the effect of Mg addition on the refinement and homogenized distribution of inclusions, deoxidized experiments with different amounts of aluminum and magnesium addition were carried out at 1873 K (1600 °C) under the condition of no fluid flow. The size distribution of three-dimensional inclusions obtained by applying the modified Schwartz–Saltykov transformation from the observed planar size distribution, and degree of homogeneity in inclusion dispersion quantified by measuring the inter-surface distance of inclusions, were studied as a function of the amount of Mg addition and holding time. The nucleation and growth of inclusions based on homogeneous nucleation theory and Ostwald ripening were discussed with the consideration of supersaturation degree and interfacial energy between molten steel and inclusions. The average attractive force acted on inclusions in experimental steels was estimated according to Paunov’s theory. The results showed that in addition to increasing the Mg addition, increasing the oxygen activity at an early stage of deoxidation and lowering the dissolved oxygen content are conductive to the increase of nucleation rate as well as to the refinement of inclusions Moreover, it was found that the degree of homogeneity in inclusion dispersion decreases with an increase of the attractive force acted on inclusions, which is largely dependent on the inclusion composition and volume fraction of inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 1. P. Kaushik, J. Lehmann, and M. Nadif: Metall. Mater. Trans. B, 2012, vol. 43, pp. 710-25.

    Article  Google Scholar 

  2. 2. S. Beretta and Y. Murakami: Metall. Mater. Trans. B, 2001, vol. 32, pp. 517-23.

    Article  Google Scholar 

  3. P. Juvonen: Master’s Thesis, Helsinki University of Technology, 2004.

  4. G.N. Shannon and S. Sridhar: High Temp. Mater. Process., vol. 24, pp. 111–24.

  5. 5. S. Sridhar and A.W. Cramb: High Temp. Mater. Processes, 2003, vol. 22, pp. 275-82.

    Article  Google Scholar 

  6. 6. S. Sridhar and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 406-10.

    Article  Google Scholar 

  7. 7. L. Wang, S. Yang, J. Li, T. Wu, W. Liu, and J. Xiong: Metall. Mater. Trans. B, 2016, vol. 47, pp. 99-107.

    Article  Google Scholar 

  8. 8. P.C. Pistorius and N. Verma: Microsc. Microanal., 2011, vol. 17, pp. 963-71.

    Article  Google Scholar 

  9. 9. L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-91.

    Article  Google Scholar 

  10. 10. D.S. Sarma, A.V. Karasev, and P.G. Jönsson: ISIJ Int., 2009, vol. 49, pp. 1063-74.

    Article  Google Scholar 

  11. 11. F. Ishikawa, T. Takahashi, and T. Ochi: Metall. Mater. Trans. A, 1994, vol. 25, pp. 929-36.

    Article  Google Scholar 

  12. 12. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos: Mater. Des., 2011, vol. 32, pp. 1605-11.

    Article  Google Scholar 

  13. 13. T.B. Braun, J.F. Elliott, and M.C. Flemings: Metall. Trans. B, 1979, vol. 10, pp. 171-84.

    Article  Google Scholar 

  14. 14. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43, pp. 830-40.

    Article  Google Scholar 

  15. 15. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, M. Lind, and S. Story: Metall. Mater. Trans. B, 2011, vol. 42, pp 711-19.

    Article  Google Scholar 

  16. 16. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, M. Lind, and S. Story: Metall. Mater. Trans. B, 2011, vol. 42, pp 720-29.

    Article  Google Scholar 

  17. 17. X. Wang, X. Li, Q. Li, F. Huang, H. Li, and J. Yang: Steel Res. Int., 2014, vol. 85, pp. 155-63.

    Article  Google Scholar 

  18. 18. G. Yang, X. Wang, F. Huang, P. Wei, and X. Hao: Metall. Mater. Trans. B, 2015, vol. 46, pp. 145-54.

    Article  Google Scholar 

  19. 19. Y. Miki and B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30, pp 639-54.

    Article  Google Scholar 

  20. 20. L. Zhang, S. Taniguchi, and K. Cai: Metall. Mater. Trans. B, 2000, vol. 31, pp. 253-66.

    Article  Google Scholar 

  21. 21. L. Zhang, J. Aoki, and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37, pp. 361-79.

    Article  Google Scholar 

  22. 22. X. Li, Y. Min, C. Liu, and M. Jiang: Steel Res. Int., 2015, vol. 86, pp. 1530-40.

    Article  Google Scholar 

  23. 23. R. Takata, J. Yang, and M. Kuwabara: ISIJ Int., 2007, vol. 47, pp. 1379-86.

    Article  Google Scholar 

  24. 24. S. Kimura, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32, pp. 79-85.

    Article  Google Scholar 

  25. 25. Z.H. Jiang, C. Wang, and W. Gong: Ironmaking Steelmaking, 2015, vol. 42, pp. 669-74.

    Article  Google Scholar 

  26. 26. K. Isobe: ISIJ Int., 2010, vol. 50, pp 1972-80.

    Article  Google Scholar 

  27. 27. K. Sakata and H. Suito: Metall. Mater. Trans. B, 1999, vol. 30, pp. 1053-63.

    Article  Google Scholar 

  28. 28. J.S. Park and J.H. Park: Steel Res. Int., 2014, vol. 85, pp 1303-9.

    Article  Google Scholar 

  29. 29. L. Zhang and W. Pluschkell: Ironmaking Steelmaking, 2003, vol. 30, pp. 106-10.

    Article  Google Scholar 

  30. 30. J. Zhang and H.G. Lee: ISIJ Int., 2004, vol. 44, pp. 1629-38.

    Article  Google Scholar 

  31. 31. H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 42-9.

    Article  Google Scholar 

  32. 32. H. Suito and H. Ohta: ISIJ Int., 2006, vol. 46, pp. 33-41.

    Article  Google Scholar 

  33. 33. H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 14-21.

    Article  Google Scholar 

  34. 34. H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 22-8.

    Article  Google Scholar 

  35. 35. K. Sakata and H. Suito: Metall. Mater. Trans. B, 1999, vol. 30, pp. 1053-63.

    Article  Google Scholar 

  36. 36. M. Guo and H. Suito: ISIJ Int., 1999, vol. 39, pp. 678-86.

    Article  Google Scholar 

  37. 37. H. Ohta and H. Suito: Metall. Mater. Trans. B, 1997, vol. 28, pp. 1131-39.

    Article  Google Scholar 

  38. 38. L. Zhang, Y. Ren, H. Duan, W. Yang, and L. Sun: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1809-25.

    Article  Google Scholar 

  39. 39. H. Itoh, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28, pp. 953-6.

    Article  Google Scholar 

  40. 40. S. Yang, Q. Wang, L. Zhang, J. Li, and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43, pp. 731-50.

    Article  Google Scholar 

  41. 41. J.H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp 1333-46.

    Article  Google Scholar 

  42. S.A. Saltykov: Stereology: Proceedings of the Second International Congress for Stereology, H. Elias, ed., Springer, New York, 1967, p. 163.

  43. 43. T. Li, S. Shimasaki, S. Taniguchi, K. Uesugi, and S. Narita: Metall. Mater. Trans. B, 2013, vol. 44, pp. 750-61.

    Article  Google Scholar 

  44. 44. I.H. Jung, S.A. Decterov, and A.D. Pelton: J. Phase Equilib. Diff., 2004, vol. 25, pp. 329-45.

    Article  Google Scholar 

  45. 45. I. Jimbo and A.W. Cramb: ISIJ Int., 1992, vol. 32, pp. 26-35.

    Article  Google Scholar 

  46. 46. B.J. Keene: Int. Mater. Rev., 1998, vol. 33, pp. 1-35.

    Article  Google Scholar 

  47. 47. D.R. Poirier, H. Yin, M. Suzuki, and T. Emi: ISIJ Int., 1998, 38, no. 3, pp. 229-38.

    Article  Google Scholar 

  48. 48. L. Zhao and V. Sahajwalla: ISIJ Int., 2003, vol. 43, pp. 1-6.

    Article  Google Scholar 

  49. 49. H. Shibata, X. Jiang, M. Valdez, and A.W. Cramb: Metall. Mater. Trans. B, 2004, vol. 35, pp. 179-81.

    Article  Google Scholar 

  50. 50. M. Humenik and W.D. Kingery: J. Am. Ceram. Soc., 1954, vol. 31, pp. 18-23.

    Article  Google Scholar 

  51. 51. C.M. Fang, S.C. Parker, and G. De With: J. Am. Ceram. Soc., 2000, vol. 83, pp. 2082-4.

    Article  Google Scholar 

  52. 52. H. Shibata, Y. Watanabe, K. Nakajima, and S.Y. Kitamura: ISIJ Int., 2009, vol. 49, pp. 985-91.

    Article  Google Scholar 

  53. 53. R.H. Bruce: Sci. Ceram., 1965, vol. 2, p. 359.

    Google Scholar 

  54. 54. M. Hino and K. Ito: Thermodynamic Data for Steelmaking, 2nd ed. Tohoku University Press, Tohoku, 2010, pp. 247-64.

    Google Scholar 

  55. 55. U. Lindberg and K. Torssel: Trans. TMS-AIME., 1968, vol. 242, p. 94.

    Google Scholar 

  56. 56. Y. Miyashita: Tetsu-to-Hagané., 1966, vol. 52, p. 1049.

    Google Scholar 

  57. 57. G. Li and H. Suito: ISIJ Int., 1977, vol. 37, p. 762.

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the National Science Foundation of China (Nos. 51574190 and 51574020) and the Open Fund of State Key Laboratory of Advanced Metallurgy (Grant No. KF14-02 and KF14-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Yang.

Additional information

Manuscript submitted August 26, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, S., Li, J. et al. Effect of Mg Addition on the Refinement and Homogenized Distribution of Inclusions in Steel with Different Al Contents. Metall Mater Trans B 48, 805–818 (2017). https://doi.org/10.1007/s11663-017-0915-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0915-y

Keywords

Navigation