Skip to main content
Log in

Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The influence of filter surface chemistry on the filtration efficiency of cast aluminum alloys was evaluated for four different filter coating compositions (Al2O3—alumina, MgAl2O4—spinel, 3Al2O3·2SiO2—mullite, and TiO2—rutile). The tests were conducted on a laboratory scale with a filtration pilot plant, which facilitates long-term filtration tests (40 to 76 minutes). This test set-up allows the simultaneous use of two LiMCAs (before and after the filter) for the determination of the efficiency of inclusion removal. The four tested filter surface chemistries exhibited good thermal stability and mechanical robustness after 750 kg of molten aluminum had been cast. All four filter types exhibited a mean filtration efficiency of at least 80 pct. However, differences were also observed. The highest filtration efficiencies were obtained with alumina- and spinel-coated filter surfaces (>90 pct), and the complete removal of the largest inclusions (>90 µm) was observed. The efficiency was slightly lower with mullite- and rutile-coated filter surfaces, in particular for large inclusions. These observations are discussed in relation to the properties of the filters, in particular in terms of, for example, the surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. LeBrun: Light Metals, 2008, 99, pp. 621- 626.

    Google Scholar 

  2. L. Holappa and O. Wijk:, Ind. Proc., 2014, 3, pp. 347-372.

    Google Scholar 

  3. C.J. Simensen and G. Berg: Aluminium, 1980, 56, 5, pp. 335 – 340.

    Google Scholar 

  4. N.J. Keegan, W. Schneider, H.P. Krug: Light Metals, 1999, 3, pp. 1031-1040.

    Google Scholar 

  5. E. Laé, H. Duval, C. Rivière, P. LeBrun, J.B. Guillot: Light Metals, 2006, 6, pp. 753-758.

    Google Scholar 

  6. H. Görner, M. Syvertensen, E.J. Øvrelid, T. A. Engh: Light Met., 2005, pp. 939–44.

  7. Zhou, D. Shu, K. Li, W.Y. Zhang, H.J. Ni, B.D. Sun, J. Wang: Metall. Mater. Trans. A, 2003,Vol. 34A, pp.1183-1191.

    Article  Google Scholar 

  8. J. Luyten, W. Vandermeulen, F. DE Schutter, C. Simensen, M. Ryckeboer: Adv. Eng. Mater., 2006, 8, 8, pp. 705–707.

    Article  Google Scholar 

  9. K. Oosumi, Y. Nagakura, R. Masuda, Y. Watanabe, T. Ohzono: Rec. Met. Eng. Mat., 2000, pp. 951–61.

  10. M. Emmel, C.G. Aneziris, G. Schmidt, D. Krewerth, H. Biermann: Adv. Eng. Mater., 2013, 15, pp. 1188-1196.

    Article  Google Scholar 

  11. M. Syversen, A. Kvithyld, S. Bao, A. Nordmark, A. Johansson: Light Met. 2014, pp. 1041–46.

  12. C. Voigt, B. Fankhänel, E. Jäckel, C.G. Aneziris, M. Stelter, J. Hubálková: Metall. Mater. Trans. B 2015, 46, 2, pp. 1066–72.

    Article  Google Scholar 

  13. D. Doutre, B. Gariepy, J.P. Martin, G. Dubé: Light Met., 1985, pp. 1179–95.

  14. T.A. Utigard and I. Sommerville: Light Met., 2005, pp. 951–6.

  15. T.L. Buijs, D. Gagnon, and C. Dupuis: Light Met., 2014, pp. 1021–24.

  16. R.I.L. Guthrie, M. Li: Metall. Mater. Trans. B 32B, 2001, 1081-1093.

    Article  Google Scholar 

  17. J.W. Fergus: J. Mat. Eng. Perf., 2005, 14, 2, pp. 267-275.

    Article  Google Scholar 

  18. C. Voigt, T. Zienert, P. Schubert, C.G. Aneziris, J. Hubálková: J. Am. Ceram. Soc., 2014, 97, 7, pp. 2046–2053.

    Article  Google Scholar 

  19. MAVI-Modular Algorithms for Volume Images, User manual, Quantitative Analysis of Microstructures, Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserlautern, 2004.

  20. K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing Limited, Cambridg, 2002.

    Book  Google Scholar 

  21. H. Toraya, N. Masciiocchi, W. Parrish: J. Mat. Res. 5 [7], 1990, 1538-43.

    Article  Google Scholar 

  22. N. Tosey, W. Schneider, H.P. Krug, A. Hardman, N. J. Keegan: Light Metals, 2001, 291–95.

  23. S. Dudczig, C.G. Aneziris, J. Hubálková, G. Schmidt, H. Berek: Ceram. Int., 40, 2014, 16727–42.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for supporting these investigations in terms of the Collaborative Research Centre 920 “Multi-Functional Filters for Metal Melt Filtration—A Contribution towards Zero Defect Materials,” Subprojects A02, S03, A03, and A06. The authors also would like to acknowledge the support of G. Schmidt and J. Hubálková (S01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Claudia Voigt or Eva Jäckel.

Additional information

Claudia Voigt and Eva Jäckel have equally contributed.

Manuscript submitted May 22, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voigt, C., Jäckel, E., Taina, F. et al. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration. Metall Mater Trans B 48, 497–505 (2017). https://doi.org/10.1007/s11663-016-0869-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0869-5

Keywords

Navigation