Skip to main content
Log in

A 2D Axisymmetric Mixture Multiphase Model for Bottom Stirring in a BOF Converter

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A process model for basic oxygen furnace (BOF) steel converter is in development. The model will take into account all the essential physical and chemical phenomena, while achieving real-time calculation of the process. The complete model will include a 2D axisymmetric turbulent multiphase flow model for iron melt and argon gas mixture, a steel scrap melting model, and a chemical reaction model. A novel liquid mass conserving mixture multiphase model for bubbling gas jet is introduced in this paper. In-house implementation of the model is tested and validated in this article independently from the other parts of the full process model. Validation data comprise three different water models with different volume flow rates of air blown through a regular nozzle and a porous plug. The water models cover a wide range of dimensionless number \( R_{\text{p}} \), which include values that are similar for industrial-scale steel converter. The kε turbulence model is used with wall functions so that a coarse grid can be utilized. The model calculates a steady-state flow field for gas/liquid mixture using control volume method with staggered SIMPLE algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ρ :

Density (kg m−3)

V :

Velocity vector (m s−1)

u,v :

Radial and axial velocity components (m s−1)

α :

Phase fraction

p :

Pressure (Pa)

g :

Gravity vector (m s−2)

τ :

Stress tensor

c :

Mass fraction

D :

Diffusion coefficient (m2 s−1)

Ω:

Volume (m3)

\( \varvec{V}_{{{\text{cd}}\infty }} \) :

Bubble terminal velocity (m s−1)

\( A_{\text{CS}} \) :

Bubble cross-section area (m2)

\( C_{\text{D}} \) :

Drag coefficient

d :

Diameter (m)

Re :

Reynolds number (dimensionless)

Mo :

Morton number (dimensionless)

μ :

Viscosity (Pa s)

\( N_{\mu } \) :

Fourth root of Morton number (dimensionless)

σ :

Surface tension (N/m)

k :

Turbulence kinetic energy (m2 s−2)

P :

Turbulence production due to shear flow

\( {\textit{P}}_{{{\text{b}}k}} \) :

Turbulence production due to bubbles

ε :

Turbulence dissipation rate (m2 s−3)

\( C_{\text{f}} \) :

Bubble friction coefficient

S :

Surface area (m2)

r,z :

Radial and axial coordinate (m)

n :

Surface unit normal vector

ϖ:

Weighing factor

M :

Molar mass (mol/kg)

R :

Molar gas constant (J mol−1 K−1)

T :

Temperature (K)

\( c_{\rho } \) :

Conversion coefficient from pressure to density (s2 m−2)

R :

Explicit residual vector

A :

Coefficient matrices for the system of equations

J :

Nozzle momentum source (kg m s−2)

\( \dot{m} \) :

Mass flux (kg s−1)

\( A_{\text{nozzle}} \) :

Nozzle area (m2)

K :

Nozzle turbulence kinetic energy source (kg m2 s−3)

t :

Time (s)

C :

Courant number (dimensionless)

\( C^{\text{vis}} \) :

Visous number (dimensionless)

ω :

Volume ratio (dimensionless)

Q :

Volume flow rate (m3 s−1)

\( d_{\text{nozzle}} \) :

Nozzle diameter (m)

H :

Bath height (m)

\( R_{\text{p}} \) :

Plume momentum ratio (dimensionless)

\( k - \varepsilon \) :

Turbulence model constants

σ k :

 = 1.0

σ ε :

 = 1.3

C μ :

 = 0.09

C ε1 :

 = 1.44

C ε2 :

 = 1.92

C ε3 :

 = 1.825

C k1 :

 = 1.0

m:

Mixture

c:

Continuous phase

d:

Dispersed phase

T:

Turbulence

D:

Diffusion

b:

Bubble

p:

Particle

eff:

Effective

\( {\text{n}},{\text{e}},{\text{s}},{\text{w}},{\text{p}} \) :

north, east, south, west, middle cell

i,j :

Grid coordinate directions

tot:

Total

a:

Air

i :

Initial value

g:

Gas

l:

Liquid

n :

Time level index

*:

Updated velocity value after momentum equation

‘:

Fluctuation of variable also used in pressure-correction algorithm as a correction

L, R:

Left, right

T:

Transpose

p :

Pressure matrix

V :

Momentum equation matrix

References

  1. D. Mazumdar and R.I.L. Guthrie, ISIJ Int., 1995, Vol. 35, pp. 1–20.

    Article  Google Scholar 

  2. H.A. Jakobsen, B.H. Sannaes, S. Grevskott and H.F. Svendsen, Ind. Eng. Chem. Res., 1997, Vol. 36, pp. 4052–74.

    Article  Google Scholar 

  3. T. Deb Roy, A.K. Majumdar and D.B. Spalding, Appl. Math. Model., 1978, Vol. 2, pp. 146–50.

    Article  Google Scholar 

  4. J.H. Grevet, J. Szekely and N. El-Kaddah, Int. J. Heat Mass Transf., 1982, Vol. 25, pp. 487–97.

    Article  Google Scholar 

  5. Y. Sahai and R.I.L. Guthrie, Metal. Trans. B, 1982, Vol. 13, pp. 203–11.

    Article  Google Scholar 

  6. M. Salcudean, C.H. Low, A.H. Hurda and R.I.L. Guthrie, Chem. Eng. Commun., 1982, Vol. 21, pp. 89–103

    Article  Google Scholar 

  7. D. Mazumdar and R.I.L. Guthrie, Metal. Trans. B, 1982, 13B, pp. 83–90

    Google Scholar 

  8. J.W. McKelliget, M. Cross and R.D. Gibson, Appl. Math. Model., 1982, Vol. 6, pp. 469–80.

    Article  Google Scholar 

  9. A.H. Castillejos, M.E. Salcudean and J.K. Brimacombe, Metal. Trans. B, 1989, Vol. 20B, pp. 603–11.

    Article  Google Scholar 

  10. D. Mazumdar and R.I.L. Guthrie, Steel Res., 1993, Vol. 64, pp. 286–91.

    Article  Google Scholar 

  11. Y.Y. Sheng and G.A. Irons, Metal. Trans. B, 1993, Vol. 24, 695–705.

    Article  Google Scholar 

  12. M.-Y. Zhu, T. Inomoto, I. Sawada and T.-C. Hsiao, ISIJ Int., 1995, Vol. 35, pp. 472–79.

    Article  Google Scholar 

  13. S. Taniguchi, S. Kawaguchi and A. Kikuchi: Proc of CSIRO, Melbourne, Australia. 1999, pp. 193–98.

  14. S. Taniguchi, S. Kawaguchi and A. Kikuchi, Appl. Math. Model., 2002, Vol. 26, pp. 249–62.

    Article  Google Scholar 

  15. S.T Johansen and F. Boysan, Metal. Trans. B, 1988, Vol. 19, pp. 755–64.

    Article  Google Scholar 

  16. D. Mazumdar and R.I.L. Guthrie, ISIJ Int., 1994, Vol. 34, pp. 384–92.

    Article  Google Scholar 

  17. Y.Y. Sheng and G.A. Irons, Metal. Mater. Trans. B, 1995, Vol. 26B, pp. 625–35.

    Article  Google Scholar 

  18. D. Guo and G.A. Irons, Metal. Mater. Trans. B, 2000, Vol. 31B, pp. 1457–64.

    Article  Google Scholar 

  19. D.C. Guo, L. Gu and G.A. Irons, Appl. Math. Model., 2002, Vol. 26, pp. 263–80.

    Article  Google Scholar 

  20. J. Aoki, L. Zhang and B.G. Thomas: Proc. of Science and Technology of Steelmaking, Charlotte, NC, 2005, pp. 319–32.

  21. M.P. Schwarz and W.J. Turner, Appl. Math. Model., 1988, Vol. 12, pp. 273–79.

    Article  Google Scholar 

  22. M.R. Davidson, Appl. Math. Model., 1990, Vol. 14, pp. 67–76.

    Article  Google Scholar 

  23. O.J. Ilegbusi and J. Szekely, ISIJ Int., 1990, Vol. 30, pp. 731–39.

    Article  Google Scholar 

  24. H. Turkoglu and B. Farouk, Metal. Trans. B, 1990, Vol. 21, pp. 771–81.

    Article  Google Scholar 

  25. H. Turkoglu and B. Farouk, ISIJ Int., 1990, Vol. 30, pp. 961–70.

    Article  Google Scholar 

  26. H. Turkoglu and B. Farouk, ISIJ Int., 1991, Vol. 31, pp. 1371–80.

    Article  Google Scholar 

  27. O.J. Ilegbusi and J. Szekely, M. Iguchi, H. Takeuchi and Z.-I. Morita, ISIJ Int., 1993, Vol. 33, pp. 474–78.

    Article  Google Scholar 

  28. M.P. Schwarz, Appl. Math. Model., 1996, Vol. 20, pp. 41–51.

    Article  Google Scholar 

  29. B.L. Smith, Appl. Math. Model., 1998, Vol. 22, pp. 773–97.

    Article  Google Scholar 

  30. O.J. Ilegbusi, M. Iguchi, K. Nakajima, M. Sano and M. Sakamoto, Metal. Mater. Trans. B, 1998, Vol. 29B, pp. 211–22.

    Article  Google Scholar 

  31. J. Hua and C.-H. Wang, Chem. Eng. Sci., 2000, Vol. 55, pp. 4159–73.

    Article  Google Scholar 

  32. L. Zhang, Modell. Simul. Mater. Sci. Eng., 2000, Vol. 8, pp. 463–76.

    Article  Google Scholar 

  33. M. L. de Bertodano, F.J. Moraga, D.A. Drew and R.T. Lahey, J. Fluids Eng., 2004, Vol. 126, pp. 573-77.

    Article  Google Scholar 

  34. R. Zboray and F. Cachard, Nucl. Eng. Des., 2005, Vol. 235, pp. 867–84.

    Article  Google Scholar 

  35. C. G. Mendez, N. Nigro and A. Cardona, J. Mater. Process. Technol., 2005, Vol. 160, pp. 296–305.

    Article  Google Scholar 

  36. A. Kruskopf, Metall. Mater. Trans. B, 2015, Vol. 46B, Issue 3, pp. 1195–206.

    Article  Google Scholar 

  37. A. Kruskopf and S. Louhenkilpi: Proc. of METEC & 2nd ESTAD, Düsseldorf Germany, 2015, P165.

  38. M. Manninen and V. Taivassalo: Report No. 288, VTT Publications, Technical Research Center of Finland, 1996.

  39. M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-phase Flow, 2nd ed., Springer, New York, 2011, pp. 334–42.

    Book  Google Scholar 

  40. Y. Sato, and M. Sadatomi, Int. J. Multiph. Flow, 1981, Vol. 7, pp. 167–77.

    Article  Google Scholar 

  41. G.D Van Albada, B. van Leer and W.W. Roberts, Astron. Astrophys., 1982, Vol. 108, pp. 76–84.

    Google Scholar 

  42. D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries Inc., California, 1994, pp. 291.

    Google Scholar 

  43. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, 1980, pp. 126–30.

    Google Scholar 

  44. J.H. Ferziger and M. Perić, “Computational Methods for Fluid Dynamics”, 3rd ed., Springer-Verlag, Berlin, 2002 pp. 313.

    Book  Google Scholar 

  45. M. Iguchi, H. Takeuchi and Z. Morita, ISIJ Int., 1991, Vol. 31, pp. 246–53.

    Article  Google Scholar 

  46. M. Iguchi, T, Kondoh, Z. Morita, K. Nakajima, K. Hanazaki, T. Uemura and F. Yamamoto, Metall. Mater. Trans. B, 1995, Vol. 26B, pp. 241-47.

    Article  Google Scholar 

  47. S.T. Johansen, D.G.C. Robertson, K. Woje and T.A. Engh, Metal. Trans. B, 1988, Vol. 19, pp. 745–54.

    Article  Google Scholar 

  48. K. Krishnapisharody and G.A Irons, Metall. Mater. Trans. B, 2013, Vol. 44B, pp. 1486–498.

    Article  Google Scholar 

  49. H. Jalkanen and L. Holappa, Treatise on Process Metallurgy Volume 3 Part A, Elsevier Ltd, Amsterdam, 2014, pp. 244.

    Google Scholar 

Download references

Acknowledgments

This work was partly funded by the Finnish Funding Agency for Technology and Innovation (TEKES). The research was carried out as part of the Finnish Metals and Engineering Competence Cluster (FIMECC)’s SIMP 2.1 subprogram. This research was also supported by a grant from Technology Industries of Finland Centennial Foundation Fund for the Association of Finnish Steel and Metal Producers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Kruskopf.

Additional information

Manuscript submitted May 24, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruskopf, A. A 2D Axisymmetric Mixture Multiphase Model for Bottom Stirring in a BOF Converter. Metall Mater Trans B 48, 619–631 (2017). https://doi.org/10.1007/s11663-016-0856-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0856-x

Keywords

Navigation