Skip to main content
Log in

Roles of Electrolyte Characterization on Bauxite Electrolysis Desulfurization with Regeneration and Recycling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The recycling of NaCl used as supporting electrolyte for bauxite electrolysis was carried out in this study. The electrolyte was regenerated by adding anhydrous CaCl2 into the solution after filtration, and effects of electrolyte characterization on bauxite electrolysis were examined by observing the change in desulfurization ratio and cell voltage. The results indicated that the desulfurization ratio increased with increasing recycling times of electrolyte. In the meantime, the increase in recycling times has led to the decrease in pH value as well as the increase in Fe ion concentration in the electrolyte, which were the main reasons for the increase in the desulfurization ratio with increasing recycling of electrolyte. The pH value of electrolyte after second electrolysis was lower than 1.5, and the desulfurization ratio increased obviously due to the increase in Fe3+ concentration and suppression of jarosite formation. The increase in Ca2+ concentration did not apparently change desulfurization ratio and anode surface activity. However, with Ca2+ addition, the cathode surface was covered by CaSO4·nH2O, thus resulting in the increase of cell voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. ZW Liu, WX Li, WH Ma, ZL Yin, and GB Wu: Metal. Mater. Trans. B, 2015, vol. 46B, pp.1702-1708.

    Article  Google Scholar 

  2. [2]X.L.Hu, W.M.Chen, and Q.L.Xie: Trans. Nonferrous Met. Soc. China. 2011,vol.21,pp.1641-1647.

    Article  Google Scholar 

  3. S.W. Bi, H.Y. Yu, H.Y. Yang, F.H. Zhao, Z.L. Yin, and X.J. Zhai: Aluminum Oxidation Production by Bayer Technology. Metallically Industry Press, 2007. (In Chinese)

  4. [5]X.Z. Gong, M.Y. Wang, Z. Wang, and Z.C. Guo: Fuel Process. Techn.,2012, vol. 99, pp.6-12.

    Article  Google Scholar 

  5. [6]W.B. Wang, S.J. Wang, H.Y. Liu and Z.X. Wang: Fuel, 2007, vol.86, pp.2747-2753.

    Article  Google Scholar 

  6. [7]V. Lam, G.C. Li, C.J.Song, J.W.Chen, C.Fairbridge, R. Hui, and J.J. Zhang: Fuel Process. Techn., 2012, vol.98, pp.30-38.

    Article  Google Scholar 

  7. [8]S.B. Lalvani, M. Pata, and R.W. Coughlin: Fuel, 1983,vol.62, pp.427-437.

    Article  Google Scholar 

  8. [9]P.G. Wapner, S.B. Lalvani, and G.Awad: Fuel Process. Techn., 1988, vol.18, pp.25-36.

    Article  Google Scholar 

  9. [10]S.T. Zhong, W.Zhao, C.Sheng, W.J.Xu, Z.M.Zong, and X.Y.Wei: Energy Fuels, 2011,vol.25, pp.3687-3692.

    Article  Google Scholar 

  10. [11]R.Oliveira, N.Pereira, D.Geraldo, and F.Bento: Electrochim.Acta, 2013, vol.105, pp.371-377.

    Article  Google Scholar 

  11. [12]J.Jeong, C.Kim, and J. Yoon: Water Research, 2009, vol.43, pp.895-901.

    Article  Google Scholar 

  12. [13]G.H. Kelsall, Q.Yin, D.J. Vaughan, K.E.R. England and N.P. Brandon: J. Electroa. Chem.,1999,vol.471,pp.116-125.

    Google Scholar 

  13. [14]C.L. Caldeira, V.S.T Ciminelli and K. Osseo-Asare: Geochim Cosmochim Acta, 2010, vol.74, pp.1777-1789.

    Article  Google Scholar 

  14. T. Rohwerder and W. Sand: Micro. Process. Metal Sulfide, 2007, pp. 35–58

  15. [16]L.Ge, X.Z. Gong, Z. Wang, L.X. Zhao, Y.H. Wang, and M.Y. Wang: Ultrason. Sonochem., 2015, vol.26,pp.142-148.

    Article  Google Scholar 

  16. [17]X.Z. Gong, S.Y. Zhuang, L.Ge, Z.Wang, and M.Y. Wang: Int. J. Miner. Process., 2015,vol.139,pp.17-24.

    Article  Google Scholar 

  17. [18]X.Z. Gong, L.Ge, Z. Wang, S.Y. Zhuang, Y.H.Wang, L.H. Ren, and M.Y. Wang: Metal. Mater. Trans. B, 2016, vol.47(1),pp.649-656.

    Article  Google Scholar 

  18. [19] F. Arslan, and P.F. Duby: Hydrometallurgy, 1997, vol.46, pp.157-169.

    Article  Google Scholar 

  19. [20]L.Li, C. Polanco, A.Ghahreman: J. Electroa. Chem., 2016,vol.774, pp.66-75.

    Google Scholar 

  20. [21]D. Calla-Choque, F. Nava-Alonso and J.C. Fuentes-Aceituno: J. Hazard. Mater., 2016, vol.317, pp. 440-448.

    Article  Google Scholar 

  21. [22]C.A. Constantin and P. Chirită: J. Appl. Electrochem., 2013, vol.43,pp.659-666.

    Article  Google Scholar 

  22. [23]S.B. Lalvani, M.Shami: Int. J. Hydrogen Energy, 1985, vol.10(7/8), pp.447-452.

    Article  Google Scholar 

  23. [24]A.P. Chandra and A.R. Gerson: Surf. Sci. Rep., 2010, vol. 65, pp. 293-315.

    Article  Google Scholar 

  24. [25]M. Panizza and G. Cerisola: Chem. Rev., 2009, vol.109, pp. 6541-6569.

    Article  Google Scholar 

  25. [26]A. Demoz, C. Khulbe, C. Fairbridge and S. Petrovic: J. Appl. Electrochem., 2008,vol.38,pp. 845-851.

    Article  Google Scholar 

  26. [27]D.X. Li, J.S. Gao, and G.X. Yue: Fuel Process. Techn., 2003,vol.82,pp.75-85.

    Article  Google Scholar 

  27. [28]S. Bayrakçeken, Y. Yaşar, and S. Çolak: Hydrometallurgy, 1990,vol.25, pp.27-36.

    Article  Google Scholar 

  28. S. Karaca, Y. Kadioğlu, S. Bayrakçeken, and M.Ş. Gülaboğlu: Fuel Process. Technol, 1997, vol. 50, pp. 225-234.

    Article  Google Scholar 

  29. [30]C.L. Caldeira, V.S.T. Ciminelli, A.Dias, and K.Osseo-Asare: Int. J. Miner. Process., 2003, vol.72, pp.373-386.

    Article  Google Scholar 

  30. H.R. Watling: Hydrometallurgy, 2006, vol. 84, pp. 81-108.

    Article  Google Scholar 

  31. [32]M.M. Antonijević, M. Dimitrijević, and Z. Janković: Hydrometallurgy, 1997, vol.46, pp.71-83.

    Article  Google Scholar 

  32. [33]R. Murphy and D.R. Strongin: Surf. Sci. Rep., 2009,vol.64,pp. 1-45.

    Article  Google Scholar 

  33. [34]Y.F.Mu, Y.J.Peng and R.A. Lauten: Electrochim. Acta, 2015,vol.174,pp.133-142.

    Article  Google Scholar 

  34. [35]M.M. Antonijević, M.D. Dimitrijević, S.M. Šerbula, V.L.J. Dimitrijević, G.D. Bogdanović and S.M. Milić: Electrochim. Acta, 2005, vol.50, pp. 4160-4167.

    Article  Google Scholar 

  35. [36]A. Schippers, T. Rohwerder and W. Sand: Appl. Microbiol. Biotechnol., 1999, vol.52, pp. 104-110.

    Article  Google Scholar 

  36. [37]A.P. Chandra, A.R.Gerson: Geochim. Cosmochim. Acta, 2011, vol.75, pp.6239-6254.

    Article  Google Scholar 

  37. [38]A.L. Sandré and A.Gaunand: J. Crystal Growth, 2012, vol.342,pp.50-56.

    Article  Google Scholar 

  38. [39]Y.J. Wang, H.Y. Li and D.P. Li: Int. J. Miner. Process. 2013,vol.120,pp. 35-38.

    Article  Google Scholar 

  39. [40]J.M. Casas, C. Paipa, I. Godoy and T. Vargas: J. Geochem. Exploration, 2007, vol. 92, pp.111-119.

    Article  Google Scholar 

  40. A.A. Moss: Miner. Mag., 1957, vol 31, pp. 407–12.

    Article  Google Scholar 

  41. [42]G.K. Das, S. Acharya, S. Anand and R.P. Das: Miner. Process. Extract. Metall. Rev., 1996, vol.16(3), pp.185-210.

    Article  Google Scholar 

Download references

Acknowledgment

This work is financially supported by the Natural Science Foundation of China under a Grant 51004090, 51474198, and Youth Innovation Promotion Association, CAS (2015036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuzhong Gong or Mingyong Wang.

Additional information

Manuscript submitted January 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Wang, Z., Zhuang, S. et al. Roles of Electrolyte Characterization on Bauxite Electrolysis Desulfurization with Regeneration and Recycling. Metall Mater Trans B 48, 726–732 (2017). https://doi.org/10.1007/s11663-016-0841-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0841-4

Keywords

Navigation