Skip to main content
Log in

Study of the Viscosity of Mold Flux Based on the Vogel–Fulcher–Tammann (VFT) Model

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Viscosity is one of the most important properties of mold flux and affects the process of continuous casting significantly. In order to describe the variation of viscosity of mold flux accurately in a wide range of temperature occurring in the casting mold, a non-Arrhenius Vogel–Fulcher–Tammann (VFT) model was adopted in this study. The results showed that the adjusted coefficient of determination (Adj. R 2) of non-Arrhenius VFT Model ranges from 0.92 to 0.96, which suggests this model could be well adapted to predict the relationship between viscosity and temperature of mold flux. The temperature at which viscosity becomes infinite, T VFT, increased with the addition of Cr2O3 and improvement of basicity, while it decreased with the addition of B2O3, as it was determined by both the degree of polymerization of the melt structure and crystallization behavior of the melt. Also, the pseudo-activation energy, E VFT, of Samples 1 to 5 was 60.1 ± 3.6, 94.7 ± 14.9, 101.7 ± 19.0, 38.0 ± 4.8, and 32.4 ± 4.0 kJ/mol, respectively; it increased with the addition of Cr2O3 and B2O3, but deceased with the increase of basicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Kajitani, Y. Kato, K. Harada, K. Saito, K. Harashima, and W. Yamada: ISIJ Int., 2008, vol. 48, pp.1215-1224.

    Article  Google Scholar 

  2. E. Takeuchi and J.K. Brimacombe: Metall. Trans. B, 1984, vol. 15, pp.493-509.

    Article  Google Scholar 

  3. Y. Chung, A. W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp.957-71.

    Article  Google Scholar 

  4. B. Thomas and J. Sengupta: JOM, 2006, vol. 58, pp. 16–18.

    Article  Google Scholar 

  5. H. Harmuth and G. Xia: ISIJ Int., 2015, vol. 55, pp. 775-80.

    Article  Google Scholar 

  6. A. Kondratiev, E. Jak, and P. C. Hayes: JOM, 2002, vol. 54, pp.41-45.

    Article  Google Scholar 

  7. L. Zhou, W. Wang, and K. Zhou: ISIJ Int., 2015, vol. 55, pp. 1961-1924.

    Google Scholar 

  8. G. Kim and IL Sohn: Metall. Mater. Trans. B, 2013, vol. 45, pp. 86-95.

    Google Scholar 

  9. X. Qi, G. Wen, P. Tang: J. Iron Steel Res. Int., 2010, vol. 17, pp. 6-10.

    Article  Google Scholar 

  10. Z. Zhang, G. Wen, P. Tang, and S. Sridhar: ISIJ Int., 2008, vol. 48, pp.739-46.

    Article  Google Scholar 

  11. E. Benavidez, L. Santini, M. Valentini, and E. Brandaleze: 11th International Congress on Metallurgy & Materials SAM/CONAMET 2011, 2012, vol. 1, pp. 389–96.

  12. T. Iida, H. Sakai, Y. Kita, and K. Shigeno: ISIJ Int., 2000, vol. 40, pp.S110-S114.

    Article  Google Scholar 

  13. K.C. Mills and S. Sridhar: Ironmak Steelmak., 1999, vol. 26, pp.262-268.

    Article  Google Scholar 

  14. H.S. Ray and S. Pal: Ironmak Steelmak., 2004, vol. 31, pp.125-130.

    Article  Google Scholar 

  15. D. H. Vogel: Physikalische Zeitschrift, 1921, vol. 22, pp.645-646.

    Google Scholar 

  16. G. S. Fulcher: J. Am. Ceram. Soc., 1925, vol. 8, pp. 339-355.

    Article  Google Scholar 

  17. G. Tammann and W. Hesse: Z. Anorg. Allg. Chem, 1926, vol. 156, pp.245-257.

    Article  Google Scholar 

  18. D. Giordano and D. B. Dingwell: Earth Planet. Sci. Lett., 2003, vol. 208, pp.337-349.

    Article  Google Scholar 

  19. D. Giordano, J. K. Russell, and D. B. Dingwell: Earth Planet. Sci. Lett., 2008, vol. 271, pp.123-134.

    Article  Google Scholar 

  20. C. A. Angell: J. Phys. Chem. Solids, 1988, vol. 49, pp.863-871.

    Article  Google Scholar 

  21. H. Lu and W. Huang: Smart Mater. Struct. 2013, vol. 22, pp.1-8.

    Google Scholar 

  22. B. Mokhtarani, A. Sharifi, H. R. Mortaheb, M. Mirzaei, M. Mafi, and F. Sadeghian: J. Chem. Thermodyn., 2009, vol. 41, pp.323-329.

    Article  Google Scholar 

  23. L. Zhou, W. Wang, B. Lu, and G. Wen: Met. Mater. Int., 2015, vol.21, pp.126-133.

    Article  Google Scholar 

  24. L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuur, and F. Tsukihashi.: Metall. Mater. Trans. B, 2012, vol. 43, pp.354-362.

    Article  Google Scholar 

  25. H. Tweer, J. H. Simmons, and P. B. Macedo: J. Chem. Phys., 1971, vol. 54, pp.1952-1959.

    Article  Google Scholar 

  26. L. Zhou and W. Wang: Metall. Mater. Trans. B, 2016, vol. 47, pp.1548-1552.

    Article  Google Scholar 

  27. C. Xu, W. Wang, L. Zhou, S. Xie, and C. Zhang: Metall. Mater. Trans. B, 2015, vol. 46, pp.882-892.

    Article  Google Scholar 

  28. V. De. Eisenhüttenleute: Slag Atlas, 2th Edition, Verlag Stahleisen GmbH, Dusseldorf ,1995, pp. 119.

    Google Scholar 

  29. L. Zhou, W. Wang, J. Wei, K. Zhou: ISIJ Int., 2015, vol. 55, pp. 821-829.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation of China (51504294, 51322405), and the China Postdoctoral Science Foundation (2016T90760) is also great acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlin Wang.

Additional information

Manuscript submitted May 23, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Wang, W. Study of the Viscosity of Mold Flux Based on the Vogel–Fulcher–Tammann (VFT) Model. Metall Mater Trans B 48, 220–226 (2017). https://doi.org/10.1007/s11663-016-0835-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0835-2

Keywords

Navigation