Skip to main content
Log in

Rapid Dissolution of Quicklime into Molten Slag by Internally Formed Gas

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In steelmaking process, quicklime is used to produce CaO-based slag. Although rapid dissolution of quicklime is required for high-efficiency refining, it is known that the rate decreases when dicalcium silicate (C2S) layer forms around the quicklime by reacting with slag. The equation that driving force is the difference of CaO content between in slag and a liquid phase of slag saturated by C2S has been often used for estimating the dissolution rate of lime, in which this saturated value is thermodynamically determined. The authors, however, revealed that the quicklime used in actual operation showed much faster dissolving rate than that of completely calcined lime that is covered by C2S layer during dissolution into slag. This was caused by a gas formation due to a thermal decomposition of residual limestone existed in quicklime. In this study, the dissolution rate of quicklime with the gas formation is quantitatively investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Yang, M. Kuwabara, T. Asano, A. Chuma, and J. Du: ISIJ Int., 2007, vol. 47, pp. 1401-1408.

    Article  Google Scholar 

  2. Y. Satyoko and W.E. Lee: Br. Ceram. Trans., 1999, vol. 98, pp. 261-265.

    Article  Google Scholar 

  3. S. Amini, M. Brungs, and O. Ostrovski: ISIJ Int., 2007, vol. 47, pp. 32-37.

    Article  Google Scholar 

  4. N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ Int., 2009, vol. 49, pp. 1474-1482.

    Article  Google Scholar 

  5. S. Kitamura, H. Shibata, and N. Maruoka: High Temp. Mater. Process., 2012, vol. 31, pp. 195-201.

    Article  Google Scholar 

  6. Y. Ogawa and N. Maruoka: Tetsu to Hagane, 2014, vol. 100, pp. 434-444.

    Article  Google Scholar 

  7. Y. Wang, X. Guo, B. Xie, J. Diao, and G.E. Wang: J. Iron Steel Res., 2011, vol. 23, pp. 8-10+33.

  8. A.K. Hewage, G. Brooks, and J. Naser: AISTech – Iron and Steel Technology Conference Proceedings, 2015, pp. 3745-52.

  9. B.K. Rout, G.A. Brooks, Z. Li, and M.A. Rhamdhani: AISTech – Iron and Steel Technology Conference Proceedings, 2015, pp. 3225-37.

  10. 10. M. Matsushima, S. Yadoomaru, K. Mori and Y. Kawai, Trans. ISIJ, 1977, vol. 17, pp. 442-449.

    Google Scholar 

  11. M. Umakoshi, K. Mori, and Y. Kawai: Trans. ISIJ, 1984, vol. 24, pp. 532-539.

    Article  Google Scholar 

  12. S. Taira, K. Nakashima, and K. Mori: Tetsu-to-Hagane, 1995, vol. 81, pp. 16-21.

    Google Scholar 

  13. T. Hamano, M. Horibe, and K. Ito: ISIJ Int., 2004, vol. 44, pp. 263-267.

    Article  Google Scholar 

  14. S. Jansson, V. Brabie, and P. Jönsson: Ironmaking Steelmaking, 2006, vol. 33, pp. 389-397.

    Article  Google Scholar 

  15. W. Yan, W. Chen, Y. Yang, X. Zhao, and A. McLean: AISTech 2015 Iron and Steel Technology Conference and 7th International Conference on the Science and Technology of Ironmaking, ICSTI 2015, Association for Iron and Steel Technology, AISTECH, 2015, pp. 2162-72.

  16. F. Pahlevani, S. Kitamura, H. Shibata, and N. Maruoka: Steel Res. Int., 2010, vol. 81, pp. 617-622.

    Article  Google Scholar 

  17. S.-y. Kitamura, F. Pahlevani, N. Maruoka, and H. Shibata: High Temperature Processing Symposium 2011, 2011.

  18. N. Dogan, G.A. Brooks, and M.A. Rhamdhani: ISIJ Int., 2011, vol. 51, pp. 1086-1092.

    Article  Google Scholar 

  19. A. Harada, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2110-2117.

    Article  Google Scholar 

  20. A. Harada, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2013, vol. 53, pp. 2118-25.

    Article  Google Scholar 

  21. A. Harada, N. Maruoka, H. Shibata, M. Zeze, N. Asahara, F.X. Huang, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2569-2577.

    Article  Google Scholar 

  22. A. Harada, G. Miyano, N. Maruoka, H. Shibata, and S. Kitamura: ISIJ Int., 2014, vol. 54, pp. 2230-2238.

    Article  Google Scholar 

  23. T.F. Deng and S.C. Du, Metall. Mater. Transactions B-Process Metallurgy and Materials Processing Science, 2012, vol. 43, pp. 578-586.

    Article  Google Scholar 

  24. 24. N. Maruoka, A. Ishikawa, H. Shibata and S. Kitamura, High Temp. Mater. Processes, 2013, vol. 32, pp. 15-24.

    Article  Google Scholar 

  25. 25. Nobuhiro Maruoka, Akira Ishikawa, Hiroyuki Shibata and Shin-ya Kitamura, Journal of the Technical Association of Refractories, Japan (TAIKABUTSU OVERSEAS), 2015, vol. 34, pp. 3-9.

    Google Scholar 

  26. N. Maruoka, A. Ishikawa, H. Shibata, and S.-y. Kitamura: 12th Biennial Worldwide Conference on Refractories, UNITECR 2011, Kyoto, 2011, pp. 590-93.

  27. N. Maruoka, J. Liu, H. Shibata, and S.-y. Kitamura: 5th Baosteel Biennial Academic Conference, Shanghai, 2013, pp. B116-20.

  28. F. Huang, J. Liu, N. Maruoka, S.-y. Kitamura, and A. Ishikawa: Int. J. Appl. Ceram. Technol., 2015, vol. 12, pp. 1239-44.

    Article  Google Scholar 

  29. N. Maruoka and H. Nogami: AISTech 2015 Iron and Steel Technology Conference (AISTech 2015), Association for Iron and Steel Technology, AISTECH, Cleveland, 2015, pp. 2117-24.

  30. H. Li, L.F. Guo, Y.Q. Li, W.C. Song, J. Feng, M. Liang, D.X. Dong, G.L. Wang, H. W. Zhang, S.L. Li, and T.F. Zhang, Advanced Materials Research, 2011, vol. 233-35, pp. 2644-2647

    Article  Google Scholar 

  31. 31. B. Tang, X. M. Wang, Z. S. Zou, and A. B. Yu, Dongbei Daxue Xuebao, 2014, vol. 35, pp. 534-538.

    Google Scholar 

  32. 32. T. F. Deng, P. Nortier, M. Ek, and S. Du, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2013, vol. 44, pp. 98-105.

    Article  Google Scholar 

  33. 33. Nobuhiro Maruoka, Akira Ishikawa, Hiroyuki Shibata, and Shin-ya Kitamura, TAIKABUTSU, 2013, vol. 65, pp. 161-167.

    Google Scholar 

  34. Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995.

Download references

Acknowledgments

This study was supported by the 23rd ISIJ Research Promotion Grant. We are grateful to all the members of the ISIJ research committee in Slag formation with high-speed lime dissolution for helpful discussions. Quicklime used in this study was supplied from Yoshizawa Lime Industry Co., Ltd. The authors also acknowledge Mr. A. Ito and Ms. M. Hayasaka at Tohoku University for their experimental assistance and Professor Kitamura at Tohoku University for allowing us to use experimental equipment and for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Maruoka.

Additional information

Manuscript submitted October 29, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruoka, N., Nogami, H. Rapid Dissolution of Quicklime into Molten Slag by Internally Formed Gas. Metall Mater Trans B 48, 113–118 (2017). https://doi.org/10.1007/s11663-016-0741-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0741-7

Keywords

Navigation