Skip to main content
Log in

Observation of Nanometric Silicon Oxide Bifilms in a Water-Atomized Hypereutectic Cast Iron Powder

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study investigated the reasons for the irregular structure of primary graphite nodules that were formed in a hypereutectic cast iron powder during water atomization. The graphite nodules contain a significant amount of micron-sized pores and multiple nanometric voids that formed from silicon oxide bifilms. The bifilms theory is often used to explain the mechanisms responsible for the presence of pores in castings. However, even if many results presented in the literature tend to corroborate the existence of bifilms, to this date, only indirect evidences of their existence were presented. The observations presented in this paper are the first to show the double-sided nature of these defects. These observations support the bifilms theory and give an explanation for the presence of porosities in castings. The bifilms were used as substrate for graphite growth during solidification. The irregular structure of the graphite nodules is a consequence of the rather random structure of the bifilms that were introduced in the melt as a result of turbulences on the surface of the melt during pouring. The confirmation of the existence of bifilms can contribute to the understanding of the mechanical properties of various metallic parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design ; John Campbell (Elsevier, Oxford, 2011).

    Google Scholar 

  2. J. F. Major, AFS Trans. 105, 901 (1998).

    Google Scholar 

  3. G. Lasko, M. Apel, A. Carre, U. Weber, and S. Schmauder, Adv. Eng. Mater. 14, 236 (2012).

    Article  Google Scholar 

  4. T. J. Marrow, J.-Y. Buffiere, P. J. Withers, G. Johnson, and D. Engelberg, Int. J. Fatigue 26, 717 (2004).

    Article  Google Scholar 

  5. Z. Yang, J. Kang, and D. S. Wilkinson, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 46, 1576 (2015).

    Article  Google Scholar 

  6. P. D. Lee, A. Chirazi, and D. See, J. Light Met. 1, 15 (2001).

    Article  Google Scholar 

  7. P. N. Anyalebechi, J. Mater. Sci. 48, 5342 (2013).

    Article  Google Scholar 

  8. L. Yao, S. Cockcroft, C. Reilly, and J. Zhu, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 1004 (2012).

    Article  Google Scholar 

  9. L. Liu, A. M. Samuel, and F. H. Samuel, J. Mater. Sci. 38, 1255 (2003).

    Article  Google Scholar 

  10. J. Zeng, D. Li, M. Kang, H. He, and Z. Hu, J. Nanosci. Nanotechnol. 13, 6948 (2013).

    Article  Google Scholar 

  11. R. C. Atwood, S. Sridhar, and P. D. Lee, Scr. Mater. 41, 1255 (1999).

    Article  Google Scholar 

  12. J. Campbell, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 42, 1091 (2011).

    Google Scholar 

  13. J. Campbell, Mater. Sci. Technol. 22, 127 (2006).

    Article  Google Scholar 

  14. J. Campbell, J. Mater. Sci. 51, 96 (2016).

    Article  Google Scholar 

  15. D. Dispinar and J. Campbell, Int. J. Cast Met. Res. 17, 280 (2004).

    Article  Google Scholar 

  16. D. Dispinar and J. Campbell, Int. J. Cast Met. Res. 17, 287 (2004).

    Article  Google Scholar 

  17. D. Dispinar and J. Campbell, Int. J. Cast Met. Res. 19, 5 (2006).

    Article  Google Scholar 

  18. W. D. Griffiths and R. Raiszadeh, J. Mater. Sci. 44, 3402 (2009).

    Article  Google Scholar 

  19. D. Dispinar, S. Akhtar, A. Nordmark, M. Di Sabatino, and L. Arnberg, Mater. Sci. Eng. A (Structural Mater. Prop. Microstruct. Process., 2010, vol. 527, pp. 3719–25.

  20. D. Dispinar and J. Campbell, Mater. Sci. Eng. A 528, 3860 (2011).

    Article  Google Scholar 

  21. G. Eisaabadi Bozchaloei, N. Varahram, P. Davami, and S. K. Kim, Mater. Sci. Eng. A 548, 99 (2012).

    Article  Google Scholar 

  22. A. M. Samuel, F. H. Samuel, and H. W. Doty, J. Mater. Sci. 31, 5529 (1996).

    Article  Google Scholar 

  23. D. N. Miller, L. Lu, and A. K. Dahle, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 37, 873 (2006).

    Article  Google Scholar 

  24. X. Cao and J. Campbell, Mater. Trans. 47, 1303 (2006).

    Article  Google Scholar 

  25. K. Liu, X. Cao, and X.-G. Chen, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 46, 1566 (2015).

    Article  Google Scholar 

  26. J. Campbell and M. Tiryakioglu, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 43, 902 (2012).

    Article  Google Scholar 

  27. J. Campbell, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 40, 786 (2009).

    Article  Google Scholar 

  28. B. Puhakka, in (Shape Cast., John Wiley & Sons, Inc., 2011), pp. 79–85.

  29. B. Puhakka, in (Shape Cast., John Wiley & Sons, Inc., 2011), pp. 241–248.

  30. R. M. German, Powder Metallurgy and Particulate Materials Processing (Metal Powder Industries Federation, Princeton, 2005).

    Google Scholar 

  31. D. B. Williams and C. B. Carter, Transmission Electron Microscopy. Imaging. III (Springer, New York, 1996).

    Book  Google Scholar 

  32. C. W. Bale, E. Belisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melancon, A. D. Pelton, C. Robelin, and S. Petersen, CALPHAD Comput. Coupling Phase Diagrams Thermochem. 33, 295 (2009).

    Article  Google Scholar 

  33. A. Sommerfeld and B. Tonn, in (American Foundry Society 1695 North Penny Lane Schaumburg IL 60173-4555 United States, 2009), pp. 39–47.

  34. I. Riposan, M. Chisamera, S. Stan, C. Ecob, and D. Wilkinson, J. Mater. Eng. Perform. 18, 83 (2009).

    Article  Google Scholar 

  35. A. De Sy, Mod. Cast. 52, 67 (1967).

    Google Scholar 

Download references

Acknowledgments

The authors thank their collaborators for their technical assistance for the work presented in this paper: the members of the laboratory LAMPOUL directed by Carl Blais, professor at Université Laval, for the powder atomizations, and Jean-Phillipe Masse from the Center for Characterization and Microscopy of Materials, the (CM)2, for his help with TEM observations.

Funding

The authors would like to acknowledge the financial support of Federal-Mogul Powertrain and AUTO21, a multi-disciplinary, auto-related research and development (R&D) initiative established by the Canadian Networks of Centres of Excellence (NCE) program. AUTO21 is funded by a blend of federal, provincial, and industry support.

Conflict of interest

The authors confirm that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathieu Boisvert or Gilles L’Espérance.

Additional information

Manuscript submitted May 10, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boisvert, M., Christopherson, D. & L’Espérance, G. Observation of Nanometric Silicon Oxide Bifilms in a Water-Atomized Hypereutectic Cast Iron Powder. Metall Mater Trans B 47, 2971–2978 (2016). https://doi.org/10.1007/s11663-016-0730-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0730-x

Keywords

Navigation