Skip to main content
Log in

The Effect of Oxygen Potential on the Sulfide Capacity for Slags Containing Multivalent Species

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dependence of sulfide capacity on the oxygen partial pressure for slags containing multivalent species was investigated experimentally using a slag containing vanadium oxide. Copper–slag equilibration experiments were carried out at 1873 K (1600 °C) in the approximate oxygen partial pressure range 10−15.4 to 10−9 atm. The sulfide capacity was found to be strongly dependent on the oxygen potential in this slag system, increasing with the oxygen partial pressure. The sulfide capacity changed by more than two orders of magnitude over the oxygen partial pressure range. The effect of changing oxygen partial pressure was found to be much greater than the effect of changing slag composition at a fixed oxygen partial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FD Richardson and CJB Fincham: J. Iron Steel Inst., 1954, 178: 4–15.

    Google Scholar 

  2. F.D. Richardson: Physical Chemistry of Melts in Metallurgy, vol 2, Academic Press, London, 1974 p. 293.

    Google Scholar 

  3. Y.-B. Kang and A.D. Pelton: Metall. Trans. B, 2009, vol. 40B, pp. 979-94.

    Article  Google Scholar 

  4. H. Gaye and J. Lehmann: Slag Atlas 2nd Ed., Verlag Stahleisen GmbH, Düsseldorf, 1995, pp. 258-267.

    Google Scholar 

  5. C. Allertz and D. Sichen: Metall. Trans. B, 2015, vol. 46B, pp. 2609–15.

    Article  Google Scholar 

  6. M. Ohta, T. Kubo and K. Morita: Tetsu–to–Hagané, 2003, 89: 742–49.

    Google Scholar 

  7. M.M. Nzotta, D. Sichen and S. Seetharaman: ISIJ Int., 1999, vol. 39, pp. 657–663.

    Article  Google Scholar 

  8. M.M. Nzotta, D. Sichen and S. Seetharaman: Metall. Trans. B, 1999, vol. 30B, pp. 909–20.

    Article  Google Scholar 

  9. S.D. Brown, R.J. Roxburgh, I. Ghita, H.B. Bell: Ironmak. Steelmak., 1982, vol. 9, pp. 163-67.

    Google Scholar 

  10. S. R. Simeonov, R. Sridhar, J.M. Toguri: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 325-34.

    Article  Google Scholar 

  11. K. Kärsrud: Scand. J. Metall., 1984, vol.13, pp. 173-75.

    Google Scholar 

  12. K. Kärsrud: Scand. J. Metall., 1984, vol.13, pp. 265-68.

    Google Scholar 

  13. A. Bronson and G.R. ST. Pierre, Metall. Trans. B, 1981, 12B: 729-731.

    Article  Google Scholar 

  14. I. Ghita and H.B. Bell: Ironmak. Steelmak., 1982, vol. 9, pp.239-43.

    Google Scholar 

  15. T.P. Floridis: Metall. Trans. B, 1978, vol. 9B, pp.319-20.

    Article  Google Scholar 

  16. J.-D. Seo and S.-H. Kim: Steel Res., 1999, vol. 70, pp. 203-08.

    Google Scholar 

  17. HSC O’Neill and J.A. Mavrogenes: J. Petrol., 2002, 43: 1049-87.

    Article  Google Scholar 

  18. [18] E. Drakaliysky, N.S. Srinivasan and L.-I. Staffansson: Scand. J. Metall., 1991, vol. 20, pp. 251–55.

    Google Scholar 

  19. L. Wang and S. Seetharaman: Metall. Trans. B, 2010, vol. 41B, pp. 367–73.

    Article  Google Scholar 

  20. M. Chapman, O. Ostrovski, G. Tranell, and S. Jahanshahi: Elektrometallurgiya, 2000, 3: 34-39.

    Google Scholar 

  21. M. Ito, K. Morita, and N. Sano: Metall. Trans. B, 1997, vol. 37B, pp. 839-43.

    Google Scholar 

  22. J.-D. Shim and S. Ban-Ya: Tetsu-to-Hagané, 1982, vol. 68, pp. 251-60

    Google Scholar 

  23. S. Ban-Ya, M. Hino, A. Sato, and O. Terayama: Tetsu-to-Hagané, 1991, vol. 77, pp. 361-80.

    Google Scholar 

  24. A. Shankar, M. Görnerup, S. Seetharaman, and A.K. Lahiri: Metall. Trans. B, 2006, vol. 37B, pp. 941-47.

    Article  Google Scholar 

  25. T. Xin and X. Chushao: ISIJ Int., 1995, vol. 35, pp. 367-371.

    Article  Google Scholar 

  26. [26] J. Zhang, X. Lv, Z. Yan, Y. Qin, and C. Bai: Ironmaking and Steelmaking, 2015, DOI: 10.1080/03019233.2015.1104070

    Google Scholar 

  27. K.D. Kim, W.W. Huh, and D.J. Min: Metall. Trans. B, 2014, vol. 45B, pp. 889-96.

    Article  Google Scholar 

  28. C. Wang, Q. Lu, S. Zhang, and F. Li: J. Univ. Sci. Tehnol. Beijing, 2006, vol. 13, pp. 213-217.

    Article  Google Scholar 

  29. T.G. Kim, W.K. Lee, J.H. Park, D.J. Min, H.S. Song: ISIJ Int., 2001, vol. 41, pp. 1460-64

    Article  Google Scholar 

  30. M. Ito, K. Morita, and N. Sano: ISIJ Int., 1997, vol. 37, pp. 839-43.

    Article  Google Scholar 

  31. M. Ohta and K. Morita: ISIJ Int., 1999, vol. 39, pp. 1231-38.

    Article  Google Scholar 

  32. I.P. Rachev, F. Tsukihashi, and N. Sano: Metall. Trans. B, 1992, vol. 23, pp. 175-81.

    Article  Google Scholar 

  33. R. Nagabayashi, M. Hino, S. Ban-Ya: Tetsu-to-Hagané, 1990, vol. 76, pp. 183-190.

    Google Scholar 

  34. B. Yan and J. Zhang: Steel Res. Int., 2010, vol. 81, pp. 742-48.

    Article  Google Scholar 

  35. H. Wang, F. Li and D. Sichen: Metall. Mater. Trans. B, 42B: 9–12.

    Article  Google Scholar 

  36. H. Farah, M.P. Brungs, D.J. Miller, G.R. Belton: Phy. Chem. Glasses, 1998, vol. 39, pp. 318-22.

    Google Scholar 

  37. H. Farah: J. Mater. Sci., 2003, vol. 38, pp. 727-37.

    Article  Google Scholar 

  38. H. Farah and M. Brungs: J. Mater. Sci., 2003, vol. 38, pp. 1885–94.

    Article  Google Scholar 

  39. R. Mittelstädt and K. Schwerdtfeger: Metall. Trans. B, 1990, vol. 21B, pp. 111–20.

    Article  Google Scholar 

  40. L. Yang and G.R. Belton: Metall. Trans. B, 1998, vol. 29B, pp. 837–45.

    Article  Google Scholar 

  41. S. Jahanshahi and S. Wright: ISIJ Int., 1993, vol. 33, pp. 195-203.

    Article  Google Scholar 

  42. A.J. du Toit, P. Gaylard, S. Jahanshahi and J. Nell: Min. Eng., 2006, vol. 19, pp. 212-18.

    Article  Google Scholar 

  43. B.O. Mysen, D. Virgo, E.-R. Neumann and F.A. Seifert: Am. Mineral, 1985, vol. 70, pp. 317-31.

    Google Scholar 

  44. A.-M. Mirzayousef-Jadid and K. Schwerdtfeger: Metall. Mater. Trans. B., 2009, vol. 40, pp. 533-43.

    Article  Google Scholar 

  45. AJ Berry and HSC O’Neill: Am. Mineral., 2004, vol. 89, pp. 790-98.

    Article  Google Scholar 

  46. AJ Berry, HSC O’Neill, DR Scott, GJ Foran and JMG Shelley: Am. Mineral., 2006, vol. 91, pp. 1901-08.

    Article  Google Scholar 

  47. K. Morita, M. Mori, M. Guo, T. Ikagawa, and N. Sano: Steel Res. Int., 1999, vol. 70, pp. 319-24.

    Google Scholar 

  48. L. Wang and S. Seetharaman: Metall. Trans. B, 2010, vol. 41B, pp. 946-54.

    Article  Google Scholar 

  49. S.M. Jung and R.J. Fruehan: ISIJ Int., 2001, vol. 41, pp. 1447-53.

    Article  Google Scholar 

  50. C. Aryio, P. Gonzales and L. Holappa: Steel Res. Int., 2005, vol. 76, pp. 284-87.

    Google Scholar 

  51. G. Tranell, O. Ostrovski and S. Jahanshahi: Metall. Trans. B, 2002, vol. 33, pp. 61-67.

    Article  Google Scholar 

  52. Y. Morizane, B. Ozturk and R.J. Fruehan: Metall. Trans. B, 1999, vol. 30, pp. 29-34.

    Article  Google Scholar 

  53. A.-M. Mirzayousef-Jadid, K. Schwerdtfeger: Metall. Trans. B, 2010, vol. 41, pp. 1038-41.

    Article  Google Scholar 

  54. F. Tsukihashi, A. Tagaya and N. Sano: Trans. ISIJ, 1998, vol. 28, pp. 164-71.

    Article  Google Scholar 

  55. M. Lindwall, J. Gran and D. Sichen: CALPHAD, 2014, vol. 47, pp. 50–55.

    Article  Google Scholar 

  56. M. Lindwall and D. Sichen: Metall. Trans. B, 2015, vol. 46B, pp. 733–40.

    Article  Google Scholar 

  57. ET. Turkdogan: Physical Chemistry of High Temperature Technology, 7th ed., Academic Press, New York, 1980, pp. 7, 81.

    Google Scholar 

  58. G.K. Sigworth and J.F. Elliott: Can. Metall. Q., 1974, vol. 13, 99. 455–61.

    Article  Google Scholar 

  59. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi and B. Sundman. Calphad, 2002, vol. 26, pp. 273-312.

    Article  Google Scholar 

  60. Thermo-Calc Software Database Fe-containing Slag Database v3.2 (accessed 17 Apr 2016). Thermo-Calc Software AB, Stockholm, Sweden.

Download references

Acknowledgments

The authors are thankful to Professor Mats Hillert for his comments and interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Sichen.

Additional information

Manuscript submitted February 23, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allertz, C., Selleby, M. & Sichen, D. The Effect of Oxygen Potential on the Sulfide Capacity for Slags Containing Multivalent Species. Metall Mater Trans B 47, 3039–3045 (2016). https://doi.org/10.1007/s11663-016-0725-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0725-7

Keywords

Navigation