Skip to main content
Log in

Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. [1] B.D. Khakhalin, A.N. Smolyakov: Metallurgist, 1957, vol. 1, pp. 176-178.

    Article  Google Scholar 

  2. [2] L.S. Konstantinov, B.D. Khokhalin, A.N. Smoliakov: Metallurgist, 1958, vol. 2, pp. 495-497.

    Article  Google Scholar 

  3. [3] I.O. Tsypin, N.S. Pavlenko, V.A. Rusalkin: Met. Sci. Heat Treat, 1968, vol. 10, pp. 745-746.

    Article  Google Scholar 

  4. [4] G. Martinez, M. Garnier, F. Durand: Appl. Sci. Res, 1987, vol. 44, pp. 225-239.

    Article  Google Scholar 

  5. C.B. Stravs, J.N. Jager: Apparatus for forming pipe or other articles in continuous lengths, the United States, 1904, p. 777561.

  6. G.R. Leghorn: Continuous centrifugal casting of tube using liquid mold, the United States, 1971, p. 3616842.

  7. W.H. Milispaugh: Centrifugal casting method, the United States, 1931, p. 1828335.

  8. [8] J. Anagnostopoulos, G. Bergeles: Metall. Mater. Trans. B, 1999, vol. 30B, p. 1095-1105.

    Article  Google Scholar 

  9. [9] A. Theodorakakos, G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, p. 1321-1327.

    Article  Google Scholar 

  10. J. Aoki, B.G. Thomas, J. Peter, K. D. Peaslee: Proc. AISTech 2004 Conf., 2004, pp. 1045–56.

  11. [11] L. Zhang: Modell. Simul. Mater. Sci. Eng, 2000, vol. 8: pp. 463.

    Article  Google Scholar 

  12. [12] Y. Xie, S. Orsten, F. Oeters: ISIJ Int., 1992, vol. 32, pp. 66-75.

    Article  Google Scholar 

  13. [13] J.E. Lait, J.K. Brimacombe, F.Weinberg: Ironmaking Steelmaking, 1974, vol. 1, pp. 90-97.

    Google Scholar 

  14. [14] C.W. Hirt, B.D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201-225.

    Article  Google Scholar 

  15. [15] B.G. Thomas, X. Huang, R.C. Sussman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 527-547.

    Article  Google Scholar 

  16. [16] Y. Ho, W. Hwang: ISIJ Int., 1996, vol. 36, pp. 1030-1035.

    Article  Google Scholar 

  17. [17] G.A. Panaras, A. Theodorakakos, G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1117-1126.

    Article  Google Scholar 

  18. [18] L. Tan, H. Shen, B. Liu, X. Liu, R. Xu, Y. Li: Acta Metall. Sin., 2003, vol. 39, pp. 435-438.

    Google Scholar 

  19. [19] L. Zhang, Y. Wang, X. Zuo: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 534-550.

    Article  Google Scholar 

  20. [20] R. Chaudhary, G. Lee, B.G. Thomas, S. Kim: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 870-884.

    Article  Google Scholar 

  21. [21] Y. Wang, L. Zhang: ISIJ Int., 2010, vol. 50, pp. 1777-1782.

    Article  Google Scholar 

  22. [22] Y. Wang, L. Zhang: ISIJ Int., 2010, vol. 50, pp. 1783-1791.

    Article  Google Scholar 

  23. [23] I.C. Ramos, J.J. Barreto, S.G. Hernandez: ISIJ Int., 2013, vol. 53, pp. 802-808.

    Article  Google Scholar 

  24. [24] B.G. Thomas, L. Zhang: ISIJ Int., 2001, vol. 41, pp. 1181-1193.

    Article  Google Scholar 

  25. [25] R. Mirandal, M.A. Barron, J. Barreto, L. Hoyos, J. Gonzalez: ISIJ Int., 2005, vol. 45, pp. 1626-1635.

    Article  Google Scholar 

  26. [26] Y. Wang, L. Zhang: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1319-1351.

    Article  Google Scholar 

  27. R. Liu, B.G. Thomas, B. Forman, H. Yin: Proc. AISTech 2012 Conf., 2012, pp. 1317–27.

  28. [28] H.A. Gutierrez, G.B. Cardiel, J.J. Barreto, S.G. Hernandez: ISIJ Int., 2014, vol. 54, pp. 1304-1313.

    Article  Google Scholar 

  29. [29] L. Zhang, B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-291.

    Article  Google Scholar 

  30. [30] S. Asai, J. Szekely: Ironmaking Steelmaking, 1975, vol. 2, pp. 205-213.

    Google Scholar 

  31. [31] Q. Yuan, B.G. Thomas, S.P. Vanka: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 703-714.

    Article  Google Scholar 

  32. [32] D. Mazumdar, R.I.L. Guthrie: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 308-312.

    Article  Google Scholar 

  33. [33] A. Alexiadis, P. Gardin, J.F. Domgin: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 949-956.

    Article  Google Scholar 

  34. [34] Q. Wang, L. Zhang, S. Sridhar, W. Yang, Y. Wang, S. Yang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1594-1612.

    Article  Google Scholar 

  35. [34] Q. Wang, L. Zhang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1933-1949.

    Article  Google Scholar 

  36. R. Liu, B.G. Thomas, L. Kalra, T. Bhattacharya, A. Dasgupta: Proc. AISTech 2013 Conf., 2013, pp. 1351–64.

  37. [37] B.E. Launder, D.B. Spalding: Comput. Method Appl. M., 1974, vol. 3, pp. 269-289.

    Article  Google Scholar 

  38. [38] B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, T. Shi, S.P. Vanka, M.B. Assar: ISIJ Int., 2001, vol. 41, pp. 1262-1271.

    Article  Google Scholar 

  39. [39] B.E. Launder, D.B. Spalding: Mathematical Models of Turbulence. New York: Academic Press, 1972.

    Google Scholar 

  40. [40] Y. Ho, C. Chen, W. Hwang: ISIJ Int., 1994, vol. 34, pp. 255-264.

    Article  Google Scholar 

  41. [41] X. Song, S. Cheng, Z. Cheng: ISIJ Int., 2012, vol. 52, pp. 1824-1831.

    Article  Google Scholar 

  42. [42] E. Loth: Progress in Energy and Combustion Science, 2000, vol. 26, pp. 161-223.

    Article  Google Scholar 

  43. [43] L. Zhang: Steel Res. Int., 2006, vol. 77, pp. 158-169.

    Google Scholar 

  44. [44] C. Pfeiler, M. Wu, A. Ludwig: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 115-120.

    Article  Google Scholar 

  45. [45] J.U. Brackbill, D.B. Kothe, C. Zemach: J. Comput. Phys., 1992, vol. 100, pp. 335-354.

    Article  Google Scholar 

  46. [46] P. Liovic, J. Liow, M. Rudman: ISIJ Int., 2001, vol. 41, pp. 225-233.

    Article  Google Scholar 

  47. ANSYS FLUENT 14.0. Canonsburg, PA: ANSYS, Inc, 2011.

  48. [48] Y. Miki, B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 639-654.

    Article  Google Scholar 

  49. [49] P.G. Mukunda, S.R. A, S.S. Rao: Met. Mater. Int., 2010, vol. 16, pp. 137-143.

    Article  Google Scholar 

  50. [50] J. Bohacekn, A. Kharicha, A. Ludwig, M. Wu: ISIJ Int., 2014, vol. 54, pp. 266-274.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant No. 51274034, Grant No. 51404019, Grant No. 51504020), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2) and the High Quality Steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted December 2, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, L. & Sridhar, S. Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands. Metall Mater Trans B 47, 2623–2642 (2016). https://doi.org/10.1007/s11663-016-0701-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0701-2

Keywords

Navigation