Skip to main content
Log in

Structural Role of Alkali Cations in Calcium Aluminosilicate Glasses as Examined Using Oxygen-17 Solid-State Nuclear Magnetic Resonance Spectroscopy

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The structural roles of alkali and calcium cations are important for understanding the physical and chemical properties of aluminosilicate melts and glasses. Recently, oxygen-17 nuclear magnetic resonance (17O NMR) studies of calcium–sodium aluminosilicate glasses showed that these structural roles are not randomly given, but rather each cation has its own preferential role. However, the relationship between cation type and role preference in calcium aluminosilicate glass is not completely understood. In the present study, the structural roles of lithium, sodium, and potassium cations in selected calcium aluminosilicate glasses are investigated using 17O solid-state NMR experiments. Data from these experiments clearly show that potassium cations have a notably stronger tendency to act as charge compensators within the network structure, compared to sodium and lithium cations. The result of 17O NMR experiment also showed that sodium and lithium cations in part act as network modifier alongside with calcium cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Y. Chang, T. F. Lee and T. Ejima: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 797-804.

    Article  Google Scholar 

  2. S. Sukenaga, N. Saito, K. Kawakami and K. Nakashima: ISIJ Int., 2006, vol. 46, pp. 352-58.

    Article  Google Scholar 

  3. W. H. Kim, I. Sohn and D. J. Min: Steel Res. Int., 2010, vol. 81, pp. 735-41.

    Article  Google Scholar 

  4. I. Sohn and D. J. Min: Steel Res. Int., 2012, vol. 83, pp. 611-30.

    Article  Google Scholar 

  5. G. H. Zhang and K. C. Chou: Metal. Mater. Trans. B, 2012, vol. 43, pp. 841-48.

    Article  Google Scholar 

  6. T. Higo, S. Sukenaga, K. Kanehashi, H. Shibata, T. Osugi, N. Saito and K. Nakashima: ISIJ Int., 2014, vol. 54, pp. 2039-44.

    Article  Google Scholar 

  7. L. Cormier, D. R. Neuville and G. Calas: J. Am. Ceram. Soc., 2005, vol. 88, pp. 2292-99.

    Article  Google Scholar 

  8. M. J. Toplis and D. B. Dingwell: Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 5169-88.

    Article  Google Scholar 

  9. G. Urbain, Y. Bottinga and P. Richet: Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 1061-72.

    Article  Google Scholar 

  10. K. J. D. MacKenzie and M. E. Smith: Multinuclear solid-state NMR of inorganic materials. 1st ed. (Pergamon, Oxford, 2002).

    Google Scholar 

  11. S. K. Lee and S. Sung: Chem. Geol., 2008, vol. 256, pp. 326-33.

    Article  Google Scholar 

  12. A. Pedone, E. Gambuzzi and M. C. Menziani: J. Phys. Chem. C, 2012, vol. 116, pp. 14599-609.

    Article  Google Scholar 

  13. B. O. Mysen and P. Richet: Silicate Glasses and Melts: Properties and Structure. 1st ed. (Elsevier, Amsterdam, 2005).

    Google Scholar 

  14. S. Sukenaga, T. Nagahisa, K. Kanehashi, N. Saito and K. Nakashima: ISIJ Int., 2011, vol. 51, pp. 333-35.

    Article  Google Scholar 

  15. A.E. Geissberger and P.J. Bray: J. Non-Cryst. Solids, 1983, vol. 54, pp. 121-37.

    Article  Google Scholar 

  16. L. Frydman and J.S. Harwood: J. Am. Chem. Soc., 1995, vol. 117, pp. 5367-68.

    Article  Google Scholar 

  17. J.P. Amoureux, C. Fernandez, and S. Steuernagel: J. Magn. Reson., Ser A, 1996, vol. 123, pp. 116–18.

  18. J. P. Amoureux, C. Huguenard, F. Engelke and F. Taulelle: Chem. Phys. Lett., 2002, vol. 356, pp. 497-504.

    Article  Google Scholar 

  19. K. Kanehashi, K. Shimoda and K. Saito: Tetsu-to-Hagané, 2009, vol. 95, pp. 321-30.

    Article  Google Scholar 

  20. J. F. Stebbins and Z. Xu: Nature, 1997, vol. 390, pp. 60-62.

    Article  Google Scholar 

  21. J. F. Stebbins, J. V. Oglesby and S. K. Lee: Chem. Geol., 2001, vol. 174, pp. 63-75.

    Article  Google Scholar 

  22. J.F. Stebbins, E.V. Dubinsky, K. Kanehashi and K.E. Kelsey: Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 910-25.

    Article  Google Scholar 

  23. S. K. Lee and J. F. Stebbins: J. Phys. Chem. B, 2003, vol. 107, pp. 3141-48.

    Article  Google Scholar 

  24. H. Maekawa, P. Florian, D. Massiot, H. Kiyono and M. Nakamura: J. Phys. Chem., 1996, vol. 100, pp. 5525-32.

    Article  Google Scholar 

  25. P. Florian, K. E. Vermillion, P. J. Grandinetti, I. Farnan and J. F. Stebbins: J. Am. Chem. Soc., 1996, vol. 118, pp. 3493-97.

    Article  Google Scholar 

  26. S.K. Lee and J.F. Stebbins: J. Non-Cryst. Solids, 2000, vol. 270, pp. 260-64.

    Article  Google Scholar 

  27. J. F. Stebbins, J. S. Wu and L. M. Thompson: Chem. Geol., 2013, vol. 346, pp. 34-46.

    Article  Google Scholar 

  28. K. Shimoda, Y. Tobu, K. Kanehashi, K. Saito and T. Nemoto: Solid State Nucl. Magn. Reson., 2006, vol. 30, pp. 198-202.

    Article  Google Scholar 

  29. H. Uhlig, M. J. Hoffmann, H. P. Lamparter, F. Aldinger, R. Bellissent and S. Steeb: J. Am. Ceram. Soc., 1996, vol. 79, pp. 2833-38.

    Article  Google Scholar 

  30. X. Y. Xue and J. F. Stebbins: Phys. Chem. Miner., 1993, vol. 20, pp. 297-307.

    Article  Google Scholar 

  31. W. E. Jackson, G. E. Brown and C. W. Ponader: J. Non-Cryst. Solids, 1987, vol. 93, pp. 311-22.

    Article  Google Scholar 

  32. R. D. Shannon: Acta Crystallogr. Sect. A, 1976, vol. 32, pp. 751-67.

    Article  Google Scholar 

  33. D. R. Neuville, L. Cormier, V. Montouillout, P. Florian, F. Millot, J. C. Rifflet and D. Massiot: Am. Mineral., 2008, vol. 93, pp. 1721-31.

    Article  Google Scholar 

  34. K. E. Kelsey, J. R. Allwardt and J. F. Stebbins: J. Non-Cryst. Solids, 2008, vol. 354, pp. 4644-53.

    Article  Google Scholar 

  35. X. Y. Xue: Solid State Nucl. Magn. Reson., 2010, vol. 38, pp. 62-73.

    Article  Google Scholar 

Download references

Acknowledgments

The authors (H.S., K.N., N.S., and S.S.) are grateful for the financial support from the Cooperative Research Program of “Network Joint Research Center for Materials and Devices”, IMRAM Tohoku University. This work was financially supported in part by a Grant-in-Aid for Scientific Research (C) Grant (No. 25420792) from the Japan Society for the Promotion of Science (JSPS) and research fund by IMRAM, Tohoku University. The authors would like to acknowledge and thank Dr. Takafumi Takahashi and Mr. Tatsuya Nishiura (Nippon Steel & Sumitomo Metal Corporation) for technical support in NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohei Sukenaga.

Additional information

Manuscript submitted November 18, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukenaga, S., Kanehashi, K., Shibata, H. et al. Structural Role of Alkali Cations in Calcium Aluminosilicate Glasses as Examined Using Oxygen-17 Solid-State Nuclear Magnetic Resonance Spectroscopy. Metall Mater Trans B 47, 2177–2181 (2016). https://doi.org/10.1007/s11663-016-0689-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0689-7

Keywords

Navigation