Skip to main content
Log in

Coke Reactivity in Simulated Blast Furnace Shaft Conditions

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Despite the fact that H2 and H2O are always present in the gas atmosphere of a blast furnace shaft, their role in the solution-loss reactions of coke has not been thoroughly examined. This study focuses on how H2 and H2O affect the reaction behavior and whether a strong correlation can be found between reactivity in the conditions of the CRI test (Coke Reactivity Index) and various simulated blast furnace shaft gas atmospheres. Partial replacement of CO/CO2 with H2/H2O was found to significantly increase the reactivity of all seven coke grades at 1373 K (1100 °C). H2 and H2O, however, did not have a significant effect on the threshold temperature of gasification. The reactivity increasing effect was found to be temperature dependent and clearly at its highest at 1373 K (1100 °C). Mathematical models were used to calculate activation energies for the gasification, which were notably lower for H2O gasification compared to CO2 indicating the higher reactivity of H2O. The reactivity results in gas atmospheres with CO2 as the sole gasifying component did not directly correlate with reactivity results in gases also including H2O, which suggests that the widely used CRI test is not entirely accurate for estimating coke reactivity in the blast furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Tuo, J. Wang, Y. Yao, J. Yang: Steel Res. Int., 2015, vol. 86, pp. 1028-1036.

    Article  Google Scholar 

  2. T. Kamijo, H. Iwakiri, J. Kiguchi, and T. Yabata: Symposium on Coke Properties Required by the Blast Furnace for Stable Operation, Department of Materials Science and Engineering, McMaster University, 1989, no. 17, pp. 204–28.

  3. S. Nomura, M. Naito, K. Yamaguchi: ISIJ Int., 2007, vol. 47, pp. 831-39.

    Article  Google Scholar 

  4. K. Li, J. Zhang, Y. Liu, M. Barati, Z. Liu, J. Zhong, B. Su, M. Wei, G. Wang, T. Yang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 811-818.

    Article  Google Scholar 

  5. M. Best, J. Burgo, H. Valia: Ironmak. Conf., 2002, vol. 61, pp. 213-239.

    Google Scholar 

  6. J. I. Rodero, J. Sancho-Gorostiaga, M. Ordiales, D. Fernández-González, J. Mochón, I. Ruiz-Bustinza, A. Fuentes, L. F. Verdaja: Ironmak. Steelmak., 2015, vol. 42, pp. 618-625.

    Article  Google Scholar 

  7. B. Gao, J. Zhang, H. Zuo, C. Qi, Y. Rong, Z. Wang: J. Iron Steel Res. Int., 2014, vol. 21, pp. 723-8.

    Article  Google Scholar 

  8. R. Sakurovs, L. Burke: Fuel Process. Technol., 2011, vol. 92, pp. 1220-4.

    Article  Google Scholar 

  9. S. Pusz, M. Krzesinska, L. Smedowski, J. Majewska, B. Pilawa, B. Kwiecinska: Int. J. Coal Geol., 2010, vol. 81, pp. 287-92.

    Article  Google Scholar 

  10. Y. Kashiwaya, K. Ishii: ISIJ Int., 1991, vol. 31, pp. 440-8.

    Article  Google Scholar 

  11. V. Sahajwalla, T. Hilding, S. Gupta, and B. Björkman: SCANMET II Conf. Proc., 2004, pp. 467–78.

  12. J. Haapakangas, O. Mattila, and T. Fabritius: ECIC—The 6th European Coke and Ironmaking Congress, 2011.

  13. W. Guo, Q. Xue, Y. Liu, Z. Guo, X. She, J. Wang, Q. Zhao, X. An: Int. J. Hydrogen Energ., 2015, vol. 40, pp. 13306-13313.

    Article  Google Scholar 

  14. S.-M. Shin and S.-M. Jung: Energy Fuel, 2015, vol. 29, pp. 6849–57.

  15. J. Iwanaga, K. Takatani: ISIJ Int., 1989, vol. 29, pp. 43-8.

    Article  Google Scholar 

  16. B. van der Velden, J. Trouw, R. Chaigneau, and J. van den Berg: Ironmak. Conf., 1999, vol. 58, pp. 275–85.

    Google Scholar 

  17. A. Roine, P. Lamberg, J. Mansikka-Aho, P. Björklund, and T. Kotiranta: HSC Chemistry ® v. 6. 12, Outotec Research Oy, Pori, 2007.

  18. J. Lundgren, T. Ekbom, C. Hulteberg, M. Larsson, C. E. Grip, L. Nilsson, P. Tunå: Appl. Energy, 2013, vol. 112, pp. 431-9.

    Article  Google Scholar 

  19. J. Moon, S. Kim, Y. Sasaki: ISIJ Int., 2014, vol. 54, pp. 63-71.

    Article  Google Scholar 

  20. L. Hooey, A. Bodén, C. Wang, C. Grip, B. Jansson: ISIJ Int., 2010, vol. 50, pp. 924-30.

    Article  Google Scholar 

  21. S. Natsui, T. Kikuchi, R. Suzuki: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2395-2413.

    Article  Google Scholar 

  22. S. Ergun: J. Phys. Chem. US, 1956, vol. 60, pp. 480–85.

  23. S. Ergun: US Bur. Mines Bull., 1962, vol. 598, pp. 1–38

    Google Scholar 

  24. Z. Huang, J. Zhang, Y. Zhao, H. Zhang, G. Yue: Fuel Process. Technol., 2010, vol. 91, pp. 843–7.

    Article  Google Scholar 

  25. A. Bliek: Mathematical Modeling of a Cocurrent Fixed Bed Coal Gasifier, Ph. D thesis, Twente University of Technology, The Netherlands, 1984.

  26. R. Everson, H. Neomagus, H. Kasaini, D. Njapha: Fuel, 2006, vol. 85, pp. 1076-82.

    Article  Google Scholar 

  27. S. Nilsson, A. Gómez-Barea, P. Ollero: Fuel, 2013, vol. 105, pp. 764-8.

    Article  Google Scholar 

  28. D. Roberts, D. Harris: Fuel, 2007, vol. 86, pp. 2672-8.

    Article  Google Scholar 

  29. H.-J. Mühlen, K. H. van Heek, and H. Jüntgen: Fuel, 1985, vol. 64, pp. 944–49.

  30. S. Umemoto, S. Kajitani, S. Hara: Fuel, 2013, vol. 103, pp. 14-21.

    Article  Google Scholar 

  31. M. Irfan, M. Usman, K. Kusakabe: Energy, 2011, vol. 36, pp. 12-40.

    Article  Google Scholar 

  32. L. Zhang, J. Huang, Y. Fang, Y. Wang: Energ. Fuel., 2006, vol. 20, pp. 1201-10.

    Article  Google Scholar 

  33. T. Wang, Q. Lin: J. Fuel Chem. Technol., 1987, vol. 15, pp. 73-8.

    Google Scholar 

  34. R. H. Hurt, A. F. Sarofim, J. P. Longwell: Fuel, 1991, vol. 70, pp. 1079-82.

    Article  Google Scholar 

  35. S. Dutta, C. Y. Wen, R. J. Belt: Ind. Eng. Chem., 1977, vol. 16, pp. 20-30.

    Article  Google Scholar 

  36. M. Grigore, R. Sakurovs, D. French, V. Sahajwalla: Energ. Fuel., 2009, vol. 23, pp. 2075-85

    Article  Google Scholar 

  37. S. Nomura, H. Terashima, E. Sato, M. Naito: ISIJ Int., 2007, vol. 47, pp. 823-30.

    Article  Google Scholar 

  38. K. Higuchi, S. Nomura, K. Kunimoto, H. Yokoyama, M. Naito: ISIJ Int., 2011, vol. 51, pp. 1308-15.

    Article  Google Scholar 

  39. S. Nomura, H. Ayukawa, H. Kitaguchi, T. Tahara, S. Matsuzaki, M. Naito, S. Koizumi, Y. Ogata, T. Nakayama, T. Abe: ISIJ Int., 2005, vol. 45, pp. 316-24.

    Article  Google Scholar 

  40. S. Wu, Y. Sun, M. Kou, W. Shen: Steel Res. Int., 2013, vol. 85, pp. 918-26.

    Article  Google Scholar 

  41. T. Hirosawa, A. Murao, N. Oyama, S. Watakabe, M. Sato: ISIJ Int., 2015, vol. 55, pp. 1321-1326.

    Article  Google Scholar 

  42. P. Ollero, A. Serrera, R. Arjona, S. Alcantarilla: Fuel, 2002, vol. 81, pp. 1989-2000.

    Article  Google Scholar 

  43. A. Gomez, N. Mahinpey: Fuel, 2015, vol. 148, pp. 160-167.

    Article  Google Scholar 

  44. C. Y. Wen: Ind. Eng. Chem., 1968, vol. 60, pp. 34-54.

    Article  Google Scholar 

  45. O. Levenspiel: Chemical Reaction Engineering, 3rd ed., John Wiley & Sons, New York, 1999, pp. 566-88.

    Google Scholar 

  46. M. Iljana, O. Mattila, T. Alatarvas, V. Visuri, K. Kurikkala, T. Paananen, T. Fabritius: ISIJ Int., 2012, vol. 52, pp. 1257-65.

    Article  Google Scholar 

Download references

Acknowledgments

This research is a part of the Systems Integrated Metal Processes (SIMP) research program coordinated by the Finnish Metals and Engineering Competence Cluster (FIMECC). The Finnish Funding Agency for Technology and Innovation (TEKES) and RENEPRO project funded by Interreg Nord are acknowledged for funding this work. Mr. Tommi Kokkonen with the University of Oulu is acknowledged for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juho Haapakangas.

Additional information

Manuscript submitted September 3, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haapakangas, J., Suopajärvi, H., Iljana, M. et al. Coke Reactivity in Simulated Blast Furnace Shaft Conditions. Metall Mater Trans B 47, 2357–2370 (2016). https://doi.org/10.1007/s11663-016-0677-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0677-y

Keywords

Navigation